
RSA-PSS – Provably secure RSA Signatures

and their Implementation v1.0.3

Johannes Böck
http://rsapss.hboeck.de/

May 4, 2011 (minor updates Jul 27, 2014)

M

Hash

mHashPadding1 salt

Hash

H bc

bc

maskedDB

MGFxor

Padding2 salt

Diplomarbeit

Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät II
Institut für Informatik

Eingereicht von Johannes Böck
geboren am 30.06.1980 in Backnang

Betreuer / 1. Gutachter: Prof. Dr. Ernst-Günter Giessmann
http://www.informatik.hu-berlin.de/~giessman/

2. Gutachter: Prof. Dr. Johannes Köbler
http://www.informatik.hu-berlin.de/~koebler/

This work is licensed under a Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/de/

http://rsapss.hboeck.de/
http://www.informatik.hu-berlin.de/~giessman/
http://www.informatik.hu-berlin.de/~koebler/
http://creativecommons.org/licenses/by/3.0/de/

Contents

1 Introduction 4

2 Theoretical Background 5
2.1 Public Key Cryptography and RSA 5
2.2 How RSA works . 5
2.3 RSA and Factoring . 6
2.4 Plain / Textbook RSA . 7
2.5 Hash Functions . 7
2.6 Hash-then-Sign . 8
2.7 Provable Security . 9
2.8 Random Oracle Model . 10
2.9 Randomization / Salt . 10
2.10 Other Public Key Algorithms . 10
2.11 Summary . 11

3 The Probabilistic Signature Scheme 12
3.1 How PSS works . 12
3.2 Appendix and Message Recovery 13
3.3 Standardization of Algorithm Primitives 14
3.4 Mask Generation Function . 15
3.5 Patents on PSS . 15
3.6 PSS for Rabin-Williams . 16
3.7 Summary . 16

4 Attacks on old Signature Schemes 16
4.1 Bleichenbacher Attack on PKCS #1 v1.5 Implementations 17
4.2 Fault-based Attack . 18
4.3 Summary . 19

5 Input hashing 19
5.1 Real-world Attack on X.509 Certificates using MD5 19
5.2 Differences between original and standardized PSS 20
5.3 Randomized Hashing . 21
5.4 Randomization in SHA-3 Candidates 22
5.5 Summary . 24

6 Considerations for Implementations 24
6.1 Hash Algorithm . 24
6.2 Key Size . 25
6.3 Exponent . 25
6.4 Separating Keys for different Schemes 26
6.5 Summary . 26

7 Protocols – Standards and Implementations 26
7.1 X.509 . 27
7.2 Cryptographic Message Syntax (CMS) and S/MIME 29
7.3 PKCS #11 . 29
7.4 IPsec . 30
7.5 XMLDSig, XMLenc . 30

2

7.6 No Support yet: OpenPGP, DNSSEC, TLS 30
7.7 Other Protocols using PSS . 31
7.8 Summary . 31

8 Implementation of X.509 PSS Signatures in nss 32
8.1 nss Library Layers . 32
8.2 Object Identifiers . 34
8.3 freebl, MGF1 . 34
8.4 PSS Padding and Verification Code 34
8.5 PKCS #11 Module . 34
8.6 Upper Layers . 35
8.7 Tools and Frontends . 35
8.8 Firefox . 36
8.9 Further work . 36
8.10 Difficulties . 37
8.11 Conclusions from the Implementation 37
8.12 Summary . 37

9 Online Tests with X.509 Certificates 38

10 Public Authorities, Research and Industry Organizations 39
10.1 Electronic Signatures in the EU 39
10.2 Electronic Signatures in Germany 40
10.3 Electronic Passports . 40
10.4 NESSIE and ECRYPT . 42
10.5 CA/Browser Forum . 42
10.6 Summary . 42

11 Really provable Security 43
11.1 Complexity Theory, P/NP and FP/FNP 43
11.2 NP complete Problems . 44
11.3 Quantum Computers and BQP 45
11.4 Provably secure Public Key Algorithm 46
11.5 Summary . 46

12 Conclusion 47
12.1 Difficulties in deploying better Cryptography 47
12.2 Summary . 48

References 50

Nomenclature 56

3

1 Introduction

Public key cryptography and digital signatures are an important building block
of today’s computer security. However, the theoretical foundations of their
security are quite weak. The whole security relies on unproven assumptions.
For high or long term security requirements this is particularly unsatisfying.

It has been shown in the past that unexpected breakthroughs in cryptanal-
ysis happen. Algorithms that were considered secure can be broken (MD5,
SHA-1, RSA with 512/768 bit). As cryptanalysis advances, it is advisable to
implement extra security measures against security threats yet unknown.

The RSA algorithm is the most popular asymmetric public key algorithm.
It can be used for both signing and encryption. For both security and perfor-
mance reasons, RSA can not be used in its “plain” form, it needs some kind of
preprocessing for the messages. For signatures, this is traditionally done with a
hash-function and some fixed padding.

While this has no known flaws, it is likely that this is not as secure as it could
be. In 1996, Bellare and Rogaway suggested two “provably secure” schemes for
RSA: The Probabilistic Signature Scheme (PSS) for signatures and Optimal
Asymmetric Encryption Padding (OAEP) for encryption. These provide “prov-
able” security under certain model assumptions. This means the security of the
scheme can be directly related to the security of the RSA function and the used
hash function. They also add randomization, which strengthens the algorithms
against certain attack scenarios.

In this work, I will investigate the use of the Probabilistic Signature Scheme
(PSS) for RSA. I will give an overview of reasons why it is a security improve-
ment over earlier schemes. I will then investigate the use of PSS in real-world
applications and analyze why it has not been adopted widely yet.

Chapter 2 provides some theoretical background about RSA, public key en-
cryption and the idea of provable security within a theoretic model (the random
oracle model). Chapter 3 will then give an overview of the development and
standardization process of RSA-PSS. In chapter 4, we will see that RSA-PSS
not only protects against unknown attack scenarios, but that the design also
lowers the possibility of certain implementation flaws that happened in the past
within RSA implementations. We will then have a look at the differences be-
tween the original PSS proposal from 1996 and the later standardized version in
chapter 5. We will see that a questionable trade-off on security has been made
to make implementation easier.

Afterwards, we will focus on the practical use of RSA-PSS. Chapter 7 will
give an overview of the use of RSA-PSS within the most popular protocols in-
volving cryptography used on the Internet today. As part of that, I also created
an implementation of RSA-PSS signatures for X.509 in the widely used nss
library (chapter 8) in the Google Summer of Code 2010. I have setup some
online test cases to check the RSASSA-PSS capabilities of X.509 implementa-
tions within web browsers (chapter 9). Afterwards, in chapter 10 we will have a

4

look at requirements by law and possible transition timelines by standardization
bodies and other involved parties.

In chapter 11, we will give an outlook on possible future developments in
the field of provable security and ask the question if it is possible to have really
provable security that does not depend on model assumptions. Finally, I will
draw some conclusions from the work done.

2 Theoretical Background

2.1 Public Key Cryptography and RSA

Public key cryptography, also often called asymmetric cryptography, is the idea
of signature and encryption systems that work with a public and a private key.
The public key can be used to encrypt messages and only a person with access
to the private key is able to decrypt it. For signatures, the private key is used to
generate a signature for a document which can then be verified with the public
key. Encryption and signatures are sometimes done with distinct algorithms,
sometimes the same algorithm can be used for both.

It is assumed that an attacker has access to the public key. The attacker
also knows how the algorithm itself works (this is called Kerckhoffs’ Principle).
The only thing that is secret is the private key.

Up to 1977, it was questionable if public key cryptography was possible at all
(and this has not finally been decided yet, see chapter 11). In a ground-breaking
article titled “New Directions in Cryptography”, Whitfield Diffie and Martin
Hellman presented the general idea of using so-called trap-door functions for
public key cryptography [Diffie and Hellman, 1977]. A trap-door function is a
special kind of one-way function. One-way functions are easy to calculate in one
direction, but difficult in the other. To be suitable for public key cryptography,
trap-door functions need another ability: It should be hard for an attacker to
invert a calculation, but it should be easy for the owner of a special secret (the
private key) to invert the calculation. Shortly after the paper from Diffie and
Hellman, Ron Rivest, Adi Shamir and Leonard Adleman presented the RSA
algorithm [Rivest et al., 1977], the first public key algorithm. RSA remains
secure up until today and is still by far the most frequently used public key
algorithm.

2.2 How RSA works

This chapter will not cover all the details of RSA, we will just try to get a basic
understanding how RSA encryption and signatures look like.

An RSA key consists of three elements: A modulus N , a public exponent e
and a private exponent d. The modulus N is a large number that is a product
of two primes p and q (N = p · q). All calculations are done with modulus

5

reduction, meaning every result that is bigger than N is divided by N and the
remainder is taken.

The exponents are chosen in a way that for any number M with M < N ,
the following is always true:

M = Md·e mod N = Me·d mod N (1)

The public key is the pair of (N, e), the private key is the pair of (N, d). We
generally can assume that exponentiation in a modulus can be done fast.

Within the key generation, it is possible (and necessary) to generate the
private exponent d with the knowledge of e and the factors p and q. d and e
have the relation

d · e ≡ 1 (mod (p− 1)(q − 1))

This is true due to the Chinese remainder theorem and Fermat’s little the-
orem. This also means that if an attacker is able to generate the factors p and
q out of N , the attacker can generate the private key. So the security of RSA
relies on the fact that factoring N is a hard problem.

If Bob wants to send a message to Alice, he needs her public key (N, e).
The encryption of a message M (with M < N) is done by the operation E =
Me mod N . If Alice wants to decrypt the message, she calculates MD = Ed

mod N . As we can easily see with equation (1), MD is exactly M , because
MD = (Me)d mod N = M (e·d) mod N = M .

Now we will have a look at signatures. Alice wants to sign a message M so
that Bob can verify with her public key that the message truly is from her. She
calculates S = Md mod N . She then sends M and S to Bob. Bob can calculate
MV = Se. Again, with equation (1) it can be easily seen that MV = Md·e = M .
If this is the case, Bob can be sure that S was created with Alice’s private key.

2.3 RSA and Factoring

As we have already seen, public key algorithms are based on trap-door functions,
a special kind of mathematical one-way functions. The RSA algorithm is based
on factoring. It is easy to multiply two large prime numbers, but no algorithm
is known that is able to factorize a large number efficiently.

However, it is not proved that RSA is as secure as factoring. It can be shown
that if an attacker is able to generate a private key from a public key, he is also
able to factorize large numbers. But until today nobody was able to prove that
an attacker who is able to decrypt messages or forge signatures is also able to
factorize large numbers. So it is unknown if the complexity of the RSA problem
is the same as the complexity of factoring.

In 1979, two years after the publication of RSA, Michael O. Rabin proposed
the Rabin public key algorithm [Rabin, 1979]. The Rabin algorithm has the
advantage of being provably as secure as factoring. It has, however, a down-

6

side: Every decryption operation produces four possible outputs and thus is
not suitable for practical applications. Williams suggested a change that avoids
this ambiguities [Williams, 1980]. This is called the Rabin-Williams algorithm,
abbreviated RW. We will come back to discuss Rabin-Williams in chapter 3.6.

The original Rabin algorithm already included the idea of hashing a message
before signing - a concept which became also crucial to make RSA secure, as we
will see in the next chapter.

2.4 Plain / Textbook RSA

In the algorithm defined in the original RSA paper [Rivest et al., 1977], the
function for signing is S = Md mod N , for verification M = Se mod N (S:
Signature, M : Message, e, N : public key, d, N : private key). This original
version – often called textbook RSA – has security problems. Assuming an
attacker has messages M1 and M2 and signatures S(M1) and S(M2). Due to
the nature of the RSA signature function, (S(M1)·S(M2)) mod N would give a
valid signature for (M1 ·M2) mod N . This is called the multiplicative property
of the RSA algorithm [Davida, 1982].

Another problem of the original, unpadded RSA scheme is the fact that the
encryption operation is directly the inverse of the signature operation. Thus,
if a person is using the same RSA key pair for both signing and encryption,
an attacker might be able to give the person encrypted data and asks for a
signature. If the victim signs, the signature contains the decrypted data. While
this may sound like an unrealistic threat, signature generation is often part of
an automated system.

2.5 Hash Functions

A way to avoid attack vectors against plain RSA is the use of a cryptographic
hash function. A hash function is a one-way function mapping any input to
an output of a fixed length. A cryptographic hash function can be classified
by certain properties. The most important one is collision resistance: A hash
function is called collision resistant if it is not possible for an attacker to generate
two different inputs which produce the same output in a reasonable amount of
time (in mathematical terms, it shall not be possible to efficiently generate M1

and M2 so that M1 6= M2 and Hash(M1) = Hash(M2)).

If for a given hash H and a message M1 with H = Hash(M1) an attacker is
able to create a message M2 with Hash(M1) = Hash(M2), this is called a second
preimage attack. If for a given hash H an attacker is able to generate a message
M so that H = Hash(M), this is called a preimage attack.

For simple signature schemes, it is necessary to have a hash function which
is collision resistant. We will later see that in certain scenarios a preimage
resistant hash function may be enough.

7

M

Hash

H(M)ASN.1Padding

Figure 1: PKCS #1 v1.5 hash-then-sign padding [RSA Inc., 1993]

For a long time, the most common hash functions were MD5 – developed
by Ron Rivest, one of the inventors of RSA – and SHA-1, developed by the US
NIST (National Institute of Standards and Technology) and the NSA.

In recent years, the research on the security of hash functions has brought
a number of unexpected results. The security of the two most commonly used
hash functions MD5 and SHA-1 has been seriously damaged. In 2004, the
Chinese researcher Xiaoyun Wang and her team were able to generate collisions
for MD4, MD5 and RIPEMD [Wang et al., 2004]. For SHA-1, the same team
showed an attack with a complexity of 269 [Wang et al., 2005]. This is not
practical on common hardware, but it can be expected that an attacker with
a reasonable amount of money to build special purpose hardware is able to
perform this attack. Later, Wang’s team was able to improve the attack to a
complexity of 263.

The SHA-2 hash function family (SHA-224, SHA-256, SHA-384 and SHA-
512), also developed by the US NIST and the NSA, remains secure until today.

After the findings of Wang, the NIST announced a competition for a new
hash standard SHA-3. 64 submissions were made to the competition1, five are
currently left for the final round (Skein2, Keccak3, JH4, Grøstl5, and BLAKE6).
The winner will be announced in late 2012.

2.6 Hash-then-Sign

Hash-then-sign has been the most common way to prevent most of the problems
with textbook RSA for signatures. The cryptographic hash of the input message
is calculated, together with some fixed padding this is used as an input for the
RSA function.

With slight modifications, the hash-then-sign method is still used in the vast

1http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo
2http://skein-hash.info/
3http://keccak.noekeon.org/
4http://www3.ntu.edu.sg/home/wuhj/research/jh/
5http://www.groestl.info/
6http://131002.net/blake/

8

M

MGF

MGF(M)

Figure 2: Full Domain Hashing

majority of today’s applications. The standard PKCS #1 v1.5 [RSA Inc., 1993]
uses a combination of a prefix (00 01 FF FF ... FF 00), an identifier for the
hash function and the hash itself as an input for the RSA function. There must
be at least eight ff bytes in the padding.

Common cryptographic hash functions today have a size between 256 and
512 bits. Due to the efficiency of the best factoring algorithms today, reasonable
key sizes for RSA are between 2048 and 4096 bits. Let’s assume a 2048 bit RSA
key with a SHA-256 hash. While the RSA function accepts an input of 2048
bit length, only 256 bits are really used, the rest is fixed. It seems reasonable
to choose a scheme that uses the full possible input length of 2048 bits. A
possibility would be the creation of a hash function with the same size as the
key. It is easy to create a hash function which takes an additional argument
for the output length out of any other hash function. Such a function is called
mask generation function (MGF). A simple approach for such a function would
be the use of multiple hashes of the input concatenated with a counter variable.
Using such a function to prepare the input message has been proposed under
the name Full Domain Hashing (FDH) [Bellare and Rogaway, 1996], which is
already an improvement over the old hash-then-sign schemes.

2.7 Provable Security

With advances in cryptographic research, it was desirable to provide “provable”
security. Pretty much all cryptographic methods today rely on assumptions. It
is in general very difficult to prove any lower complexity bounds for mathemati-
cal problems. Therefore it is also difficult to define lower complexity bounds for
breaking any cryptographic algorithm. The trust in cryptographic algorithms is
almost entirely based on the assumption that if publicly documented and well-
known algorithms have been reviewed by a large number of researchers without
any breakthroughs in attacks, the algorithm is believed to be secure.

So provable security can make no statements about the security of a complete
cryptographic system. It can however make statements in the way that the
security of a system can be related to the security of an underlying fundamental
problem.

9

2.8 Random Oracle Model

The random oracle model is a theoretic model assuming an ideal hash function
[Bellare and Rogaway, 1993]. The hash function works like a black box that
returns a truly random output for every new input. The oracle “remembers”
all inputs and if the same input is given, it produces the same output.

There are some theoretic doubts about security proofs in the random or-
acle model and some researchers remain sceptical how relevant a proof in the
random oracle model is for security in reality [Dent, 2006]. Canetti was able
to construct a special scheme that is provably secure in the random oracle
model while at the same time being insecure with any real hash function ap-
plied [Canetti et al., 2002]. But even to those sceptical researchers a proof of a
scheme in the random oracle model is considered a vast improvement compared
to no proof at all.

2.9 Randomization / Salt

Randomization means that some part of an algorithm has a random input,
which causes the output to be different for equivalent inputs. In the most
commonly used RSA schemes from the standard PKCS #1 v1.5, the encryption
scheme contains randomization. This is crucial to prevent dictionary attacks.
In scenarios where only a limited number of messages is possible (for example a
yes/no reply inside a protocol), an attacker could simply try out all possibilities
and compare them to the encrypted message.

However, for signatures, the PKCS #1 v1.5 hash-then-sign scheme is strictly
deterministic. For the same input and key, the output will always be the same.
Including randomization is generally considered as a strengthening of a crypto-
graphic protocol, which we will demonstrate later in chapter 4.2.

Randomization in a protocol is usually done with a so-called salt. A fixed-
size random value that is included at some point in the protocol – often before a
hashing-step. The salt usually then has to be shipped along or in some encoded
form within the protocol. Sometimes the salt is also called seed or nonce.

2.10 Other Public Key Algorithms

Beside RSA, only a very small number of public key algorithms exist. Also quite
common is the ElGamal algorithm [ElGamal, 1985], which relies on the diffi-
culty of the discrete logarithm problem. But similar to RSA, there is no proof
that breaking ElGamal is as hard as solving the discrete logarithm problem.
ElGamal is often found under the name DSA (Digital Signature Algorithm), a
standard by the US National Institute of Standards and Technology (NIST).

It is generally believed that solving a discrete logarithm is of similar difficulty
as factoring large numbers. The most efficient algorithms for solving both are
the same. So one can generally assume that ElGamal and RSA with the same

10

key size have equal security. However, it has never been proven that factoring
and discrete logarithms have the same complexity.

Another variant of public key cryptography that has gained popularity in
recent years is elliptic curve cryptography. Elliptic curve cryptography also
relies on the ElGamal / DSA algorithm, thus the most widely used algorithm
is called ECDSA. ElGamal can be defined over any cyclic group. Usually, it
is done over a prime field. But the points on a so-called elliptic curve also
build a cyclic group. It is generally believed that using ElGamal over elliptic
curves can yield the same security with much smaller keys. The reason for that
is that the best known algorithms for solving the discrete logarithm problem
in prime fields and for integer factorization like the general number field sieve
do not work for solving discrete logarithms within elliptic curves. The most
efficient algorithm for solving discrete logarithms in elliptic curves is Pollard’s
rho algorithm. Common key sizes for ECDSA are between 160 and 571 bit,
compared to a safe key size between 2048 and 4096 for RSA / ElGamal based
algorithms.

It should be noted however that the security of elliptic curves also relies on
unproven assumptions. There is no proof that it is not possible to extend the
general number field sieve to discrete logarithms in elliptic curves. It also may
be that a yet unknown algorithm is able to break elliptic curve cryptography
for equal key sizes [Schneier, 1999].

While a number of other public key algorithms have been proposed in the
past, most of them only gained academic interest. We already mentioned the Ra-
bin [Rabin, 1979] and Rabin-Williams [Williams, 1980] cryptosystems, which
are provably as secure as factoring. A lot of public key systems proposed in the
past have been broken (for example the Merkle-Hellman knapsack cryptosystem
[Shamir, 1984] or the SFLASH signature scheme). Others remain impractical,
like the McEliece system [McEliece, 1978], which has public and private keys of
several hundred kilobytes. Another cryptosystem with interesting properties is
NTRU, but it is rarely used because it is patented. McEliece and NTRU are pos-
sible candidates for public key cryptosystems resistant to quantum computers
[Bernstein, 2009].

2.11 Summary

We have introduced the concept of public key cryptography in general. We have
discussed the RSA algorithm with the hash-then-sign scheme, which is what the
vast majority of RSA implementations are using today.

We have discussed the idea of provable security, which can – with today’s
knowledge – only work under certain model assumptions.

11

salt M

Hash

H maskedDB

MGF xor

salt 0padding

0

Figure 3: Original PSS algorithm [Bellare and Rogaway, 1996]7

3 The Probabilistic Signature Scheme

After inventing the random oracle model and proposing a scheme they later
called Full Domain Hashing, Bellare and Rogaway continued their work by
proposing two new schemes for RSA that became the basis of upcoming cryp-
tography standards. For encryption, they propose the Optimal Asymmetric
Encryption Padding (OAEP) [Bellare and Rogaway, 1995].

In a paper from 1996, Rogaway and Bellare discuss the security of the original
hash-then-sign scheme and the Full Domain Hashing scheme. They come to the
conclusion that for both schemes, no tight security assertions can be made. They
provide another scheme, the Probabilistic Signature Scheme. They can prove in
the random oracle model that the security of the scheme can be tightly related
to the hardness of inverting the RSA function [Bellare and Rogaway, 1996].

Both PSS and OAEP have randomization, which provides protection against
certain types of implementation attacks (see chapter 4.2). It should also be noted
that the randomization is a crucial part of the security proof and that attacks
may be possible if the source of the random numbers is weak [Brown, 2005].

3.1 How PSS works

PSS takes the input message and a salt (a random number) and runs them
through a hash function. This hash H is used as the beginning part of the
output. Then, a mask of H is calculated, which has the length of the RSA
modulus minus the length of H. This mask is then XOR-ed with the salt
(and some zero padding) and the output will be called maskedDB. Then,
maskedDB is appended to H to generate the input for the RSA function (see
figure 3 for a graphical representation of the algorithm).

7 The diagram in the original PSS paper looks quite differently, I created this diagram in
a similar way as the one in PKCS #1 v2.1 to outline the similarities and differences between
the original proposal and the final standard.

12

M

Hash

mHashPadding1 salt

Hash

H bc

bc

maskedDB

MGFxor

Padding2 salt

Figure 4: RSASSA-PSS according to PKCS #1 v2.1 / RFC 3447 errata8

The variant that later became part of standards is slightly different. H and
maskedDB are switched in their order. The input message M is hashed at
the beginning and then hashed again with a salt appended (see figure 4 for a
graphical representation). We will discuss the security impact of those changes
later in chapter 5.

It is in theory possible to set the salt size to zero. This makes PSS a deter-
ministic algorithm again which has security properties similar to Full Domain
Hashing.

3.2 Appendix and Message Recovery

PSS comes in two variants, with appendix and with message recovery. Signature
scheme with appendix (sometimes referred to as SSA) means that the signature
is an additional block of data appended to a signed message. Message recovery
means that parts of the message are encoded within the signature. This can be
relevant if the size of the transmitted data is a bottleneck and every byte matters
– for example on smart cards. In the vast majority of applications, message
recovery is not needed and signature scheme with appendix is the default and
also the only variant of PSS specified in the PKCS #1 standard by RSA Inc.
and the IETF (Internet Engineering Task Force).

8The diagram in the original version of PKCS #1 v2.1 / RFC 3447 is erroneous, however,
the IETF never changes finished RFCs. The correct version of the diagram is listed in the
RFC Errata at http://www.rfc-editor.org/errata_search.php?rfc=3447

13

http://www.rfc-editor.org/errata_search.php?rfc=3447

Signature Algorithm: rsassaPss

Hash Algorithm: sha512

Mask Algorithm: mgf1 with sha512

Salt Length: 01BE

Trailer Field: 0xbc (default)

Listing 1: ”PSS parameter block in OpenSSL”

3.3 Standardization of Algorithm Primitives

In 1998, Bellare and Rogaway submitted the PSS algorithm to the IEEE (In-
stitute of Electrical and Electronics Engineers) P1363 working group for public
key cryptography. In 2000, the IEEE released P1363a [IEEE, 2004], which
contains a PSS based (but significantly modified, see chapter 5) RSA signature
algorithm padding called EMSA4 and also OAEP based RSA encryption.

The PKCS standards are provided by RSA Inc., the company of RSA founder
Ron Rivest. PKCS #1 contains primitives for public key operations. In 2002,
RSA laboratories published PKCS #1 v2.1 [RSA Inc., 2002], which provides
cryptographic primitives for RSA-PSS and RSA-OAEP. The function EMSA-
PSS in PKCS #1 v2.1 is compatible with EMSA4 in IEEE 1363A. The PKCS
standards are widely used within the development of cryptographic solutions and
standards. In 2003, the IETF republished PKCS #1 v2.1 as RFC 3447. RFC
stands for “Request for Comment”, all standards by the Internet Engineering
Task Force (IETF) that build the basis of the Internet are called RFCs.

The PKCS #1 v2.1 standard also specifies so-called Object Identifiers (OIDs)
for PSS and OAEP. Object Identifiers are part of the ASN.1 encoding standard
and provide a hierarchical standard for unique identifiers for objects. All ASN.1-
based cryptographic standards contain unique algorithm identifiers as OIDs.

id-RSAES-OAEP 1.2.840.113549.1.1.7
id-mgf1 1.2.840.113549.1.1.8
id-pSpecified 1.2.840.113549.1.1.9
id-RSASSA-PSS 1.2.840.113549.1.1.10

id-mgf1 is for the mask generation function MGF1. pSpecified is only used
by OAEP, we will not cover the details here.

With old PKCS #1 v1.5 paddings, there was usually an OID for every com-
bination of algorithm and hash function, so for example 1.2.840.113549.1.1.11
is the OID for sha256WithRSAEncryption. This is different with PSS/OAEP.
Instead, we have a parameter block after the algorithm identifier containing the
hash function, the mask generation function, the hash function used to generate
the mask generation function, the salt length and a trailing field (the trailing
field has no real purpose, as it has a fixed value, it is only there for compatibility
reasons with IEEE P1363a). Listing 1 shows an example of the parameter block
in OpenSSL.

14

In the PKCS standard, the old and new signature schemes are called
RSASSA-PSS and RSASSA-PKCS1-v1 5, the underlying encoding operations
EMSA-PSS and EMSA-PKCS1-v1 5. These naming conventions will be used
within this document. If we refer specifically to the original PSS version, we
will call it PSS96.

3.4 Mask Generation Function

PSS requires a so-called mask generation function. This is basically like a hash
function, but with a variable output size. In other contexts, similar functions
are also called key derivation functions. The PKCS #1 v2.1 standard lists only
one possible function, MGF1. It is based on an existing hash algorithm and
just works by using the input plus a four byte counter starting with zero as an
input for the hash function and increment the counter to get enough output bits
from the hash function. The last output is cut to get the required size. MGF1
is mostly equivalent to the key derivation function KDF2, as specified in ISO
18033-2 [ISO, 2006].

MGF1 has the property that two calls to MGF1 with the same hash function
and the same input with a different output size would lead to an output identical
at the beginning. For example, if we calculate both MGF1(SHA-256, "hello",

10) and MGF1(SHA-256, "hello", 20), we get:

MGF1(SHA-256, "hello", 10) = da75447e22f9f99e1be0

MGF1(SHA-256, "hello", 15) = da75447e22f9f99e1be09a00cf1a07

As we see, the first 10 bytes of the second MGF1 output are identical to the
first MGF1 output.

This looks like an unideal cryptographic property of a mask generation func-
tion. This has no impact on PSS – the only possible scenario where one would
have the same input to MGF1 and a different output length would be if one
used the same salt and message with a different key size (compare figure 4).
So within a proper implementation of RSASSA-PSS, the use of MGF1 is just
fine. However, if MGF1 is used within other cryptographic constructions, this
property should be considered and it should be investigated if it causes any
problems.

3.5 Patents on PSS

The University of California has filed two patents on PSS
[Bellare and Rogaway, 2001] [Bellare and Rogaway, 2006]. During the
standardization process for IEEE P1363a, they claimed that if PSS with
appendix gets standardized, they will freely license the patent to anyone doing
implementations of the standard [Grell and University of California, 1999].
They would however charge fees for PSS with message recovery.

Both patents have not been renewed and thus #6,266,771 expired on July

15

24, 2009 and #7,036,014 expired on April 25, 2010. So currently, PSS in any
variant is most probably free of patent claims (source: personal email from the
University of California, Office of Technology Transfer).

I am not aware of any patents covering OAEP.

Due to the free licensing for PSS with appendix since 2000 (the finalization
of IEEE P1363a), it is unlikely that the patent situation was hindering the
implementation and use of PSS based solutions.

3.6 PSS for Rabin-Williams

We mentioned in chapter 2.3 that RSA is based on the factoring problem, but
nobody has been able to prove that breaking RSA is as hard as factoring. Talk-
ing about provable security, it would be nice to have such a statement.

When developing PSS, Bellare and Rogaway also considered the Rabin-
Williams algorithm, which is provably as hard as factoring. They provide a
variant of PSS for it. In terms of provable security, RW-PSS would definitely
be the better choice, as it not only proves that there are no flaws within the
padding scheme, but also that the security of the cryptosystem itself can be
directly related to a well-known basic mathematical problem.

Despite its good security properties, RW is rarely used today. Primitives
are standardized within IEEE P1363a, but not within PKCS #1 and not in any
RFC. No major high-level protocol involves support for RW signatures. So the
only reason not to use the RW algorithm today are missing standards. From a
cryptographic point of view it would make a lot of sense.

3.7 Summary

Based on the idea of provable security in the random oracle model, Philipp
Rogaway and Mihir Bellare developed the Probabilistic Security Scheme (PSS).
With PKCS #1 v2.1, we have a widely accepted standard of cryptographic
primitives for RSA with PSS. Although patented in the past, there are no patent
claims today to prevent the implementation of PSS.

The more secure combination of the Rabin-Williams algorithm and PSS
(RW-PSS) is barely used and is missing widely accepted standards.

4 Attacks on old Signature Schemes

As stated before, there are no known security flaws in the old RSASSA-PKCS1-
v1 5 signature scheme. In this chapter, we will discuss two attacks on weak
implementations of RSASSA-PKCS1-v1 5 that would not have been possible

16

with RSASSA-PSS. The purpose is to show that PSS is generally more robust
against implementation flaws.

4.1 Bleichenbacher Attack on PKCS #1 v1.5 Implemen-
tations

At the rump session of Crypto 2006, Daniel Bleichenbacher presented an attack
against certain implementations of RSA with the PKCS #1 1.5 hash-then-sign
scheme (the attack has been written down by Hal Finney [Finney, 2006]). The
attack makes use of the rather simple structure of the RSA function’s input and
the unused padding part.

The message encoding in EMSA-PKCS1-v1 5 looks like this:

00 01 FF FF ... FF 00 { ASN.1 { H(M)

ASN.1 contains just an ID of the used hash algorithm, H(M) is the hash of
the input message M . Several implementations did not calculate the length of
the padding, instead they scanned the FFs until they found a zero byte. This
caused an input looking like this to be considered valid, too:

00 01 FF FF ... FF 00 { ASN.1 { H(M) { garbage

With a small RSA exponent (the attack was shown for e = 3), by carefully
selecting “garbage”, it is possible to construct the input to be a perfect cube,
which makes it possible to use the cube root as a valid signature.

In listing 2 you can see the patch to prevent the Bleichenbacher attack
in OpenSSL9 (CVE-2006-4339, fix included since OpenSSL version 0.9.7k and
0.9.8c). s is a pointer to the beginning of the signature, p is the current pointer,
which should be at the end of the signature and i is the expected size of the
signature. Therefore, the check for (p != s+i) guarantees that no garbage is
present after the message hash.

It should be stressed that this attack is not on RSA or PKCS #1 v1.5 itself,
but on faulty implementations. A check like the one shown in OpenSSL to verify
that either the padding has the correct length or that there is no garbage data
after the hash is a sufficient counter-measure against this threat. When it was
first discovered, a number of popular RSA implementations were vulnerable to
the attack.

The attack vector here is that large parts of the RSA input in EMSA-PKCS1-
v1 5 are fixed values. With EMSA-PSS, the whole encoded message that is
passed to the RSA function depends on the input message, so this kind of
attack would not have been possible.

It should also be noted that the whole attack depends on a very small ex-
ponent e of the RSA key, which is considered bad practice and may pose other
threats.

9http://www.openssl.org/news/patch-CVE-2006-4339.txt

17

http://www.openssl.org/news/patch-CVE-2006-4339.txt

--- crypto/rsa/rsa_sign.c 26 Apr 2005 22:07:17 -0000 1.21

+++ crypto/rsa/rsa_sign.c 4 Sep 2006 15:16:57 -0000

@@ -185,6 +185 ,23 @@

sig=d2i_X509_SIG(NULL ,&p,(long)i);

if (sig == NULL) goto err;

+

+ /* Excess data can be used to create forgeries */

+ if(p != s+i)

+ {

+ RSAerr(RSA_F_RSA_VERIFY ,RSA_R_BAD_SIGNATURE);

+ goto err;

+ }

+

+ /* Parameters to the signature algorithm can also be used to

+ create forgeries */

+ if(sig ->algor ->parameter

+ && sig ->algor ->parameter ->type != V_ASN1_NULL)

+ {

+ RSAerr(RSA_F_RSA_VERIFY ,RSA_R_BAD_SIGNATURE);

+ goto err;

+ }

+

sigtype=OBJ_obj2nid(sig ->algor ->algorithm);

Listing 2: Patch for OpenSSL to prevent Bleichenbacher attack

4.2 Fault-based Attack

In 1996, Dan Boneh and others [Boneh et al., 1996] presented an attack on
RSA doing faulty calculations. By injecting random faults into the calculations
of RSA, they are able to regenerate the private key from the knowledge of the
faulty signatures. RSA implementations using the Chinese remainder theorem
to speed up calculations are especially vulnerable – a single erroneous signature
allows the regeneration of the private key.

Similar attacks have been shown subsequently. For example, Eric Brier and
others [Brier et al., 2006] provide a fault-based attack on the RSA modulus
operation. The assumption is that an attacker is able to flip random bits in
the modulus. After a certain number of faulty signatures (approx. 60.000),
an attacker is able to calculate the private key with statistical analysis of the
signatures.

Protection against fault-based attacks like this is especially important in em-
bedded devices like chip cards that are built not to expose the private key, but to
provide cryptographic operations like signatures in an environment potentially
under control of an attacker. The easiest counter-measure without changing the
algorithms involved is to always verify created signatures and not to expose any
faulty results.

However, the attack relies on the fact that the attacker knows the full input

18

of the RSA function. Coron and others [Coron et al., 2009] investigated the
impact of fault-based attacks on randomized cryptographic schemes. They were
able to extend the Boneh attack to certain randomized schemes, but only in
schemes that expose the random input to the attacker. In PSS, the random salt
is encoded within the signature – it is not possible to gain the salt from a faulty
signature. In a later work, Coron and Mandal [Coron and Mandal, 2009] were
able to prove that PSS is invulnerable against these kinds of fault-based attacks.

As we have seen, similar to the Bleichenbacher attack, fault-based attacks
are no direct attacks against old padding schemes. A careful implementation
that guarantees that an attacker will never see a faulty signature can avoid them.
But PSS would have prevented the whole attack in the first place, without any
extra security measures. This shows again that PSS is much more robust with
respect to implementation problems.

4.3 Summary

We have seen two examples of practical attacks that make use of specific aspects
of the hash-then-sign schemes. Both attacks would have been avoided with the
design of PSS. So we have seen that PSS provides more robustness against
real-world problems.

Both examples were attacks not against the algorithms itself, but against
their implementations. Therefore, PSS is not only a protection against yet
unknown security flaws, but it also seems that it makes implementation flaws
less likely.

5 Input hashing

There are some substantial differences between the original proposal
[Bellare and Rogaway, 1998] and the final standard [RSA Inc., 2002],
[IEEE, 2004].

We will first have a look at an attack that was done against X.509 / SSL
certificates and then discuss the impact on both PSS variants.

5.1 Real-world Attack on X.509 Certificates using MD5

The MD5 hash function was the de facto standard for a cryptographic hash
function for quite a while. In 2004, it got under serious attack – a collision
was shown by Xiaoyun Wang and others [Wang et al., 2004] based on previous
work by Hans Dobbertin [Dobbertin, 1996].

A collision of a cryptographic hash function means that you can generate two
inputs A and B with Hash(A) = Hash(B). There was, however, some debate
about the impact of a collision, as many uses of cryptographic hash functions

19

are only affected by so-called preimage attacks. A preimage attack means that
for a given output O of a hash function you can generate a value A so that
Hash(A) = O.

Improvements on the attack on MD5 allowed not only random inputs with
a collision, but also different meaningful inputs generating the same output,
assuming you have some way to put random looking, specifically crafted bits
into the input. At the 25th Chaos Communication Congress, a group of re-
searchers presented a way how they created a real-world working CA certificate
from RapidSSL. RapidSSL is a certificate authority accepted by all major web
browsers. It would’ve been accepted by all major browsers, but they (volun-
tarily) created it with an already expired date [Sotirov et al., 2008]. This was
not a limitation of the attack, but a measurement by the security researchers
to avoid misuse of their results.

The main problem they faced was that they had to predict the exact input of
the certificate that the CA would put into their signing mechanism. It was only
possible because RapidSSL generated all certificates with a timestamp exactly 6
seconds after certificate request and used incremental serial numbers. By doing
several tests they were able to predict the number of issued certificates with a
high probability and thus where able to prepare a collision for the correct serial
number.

5.2 Differences between original and standardized PSS

The first step of the original proposal was to generate a salt10 and hash both
the salt and the message M :

Hash(padding||salt||M)

Contrary to that, PKCS #1 v2.1 (and also IEEE P1363a) uses a hash of the
message as the first step and then adds the salt:

mHash = Hash(M)
M ′ = Hash(padding||mHash||salt)

Please note also that the original proposal puts the salt in front of the
message, while the standard appends the salt to the end.

While this change does not look very significant, it seriously weakens the
security when using a real-world hash function. This can be easily seen when
comparing that to the attack presented above. We assume we have a broken
hash-function that allows the generation of collisions (examples would be MD2,
MD5, RIPEMD, SHA-0), but is still resistant to preimage attacks. The PKCS
#1 v2.1 variant would allow us to do the following: We create two inputs, one
looking nice and one malicious with the same hash sum. We ask the owner of
the private RSA key to sign the nice input. The signature would still be valid
for the malicious input (exactly what has been done in the RapidSSL attack).

10The PSS96 proposal uses the term seed instead of salt. For clarity, we will always use salt
within this document.

20

This only works because the first thing done in the whole process is hashing
the message and this is the only place in the whole algorithm where the message
is used at all. With the original algorithm, this would be avoided, as the attacker
cannot precompute a collision of salt||M when he does not know the salt.

For this to have an effect, it is crucial that the salt is put in front of the
message. This is due to the nature of most real-world hash functions (including
MD5, SHA-1, SHA-256) - they are all based on the Merkle-Damgard design.
They have an internal state. If we have a collision Hash(M1) = Hash(M2),
then this also implies Hash(M1||salt) = Hash(M2||salt). At the point when
the hash function processes the salt, the internal state of the hash function
is identical and with an identical input following, both will produce the same
output.

PKCS #1 v2.1 (chapter 9.1, page 37 in [RSA Inc., 2002]) contains a note
that gives a hint why this choice was made:

Without compromising the security proof for RSASSA-PSS, one may
perform steps 1 and 2 of EMSA-PSS-ENCODE and EMSA-PSS-
VERIFY (the application of the hash function to the message) out-
side the module that computes the rest of the signature operation, so
that mHash rather than the message M itself is input to the module.

The design of RSASSA-PSS allows to separate the first hashing step from
the rest of the signature operation. This is especially important for devices like
smart cards where data transfer is limited. One can design applications that only
calculate the hash of a message and transfer that to a cryptographic unit (like
a smart card) that does the signature operation. Beside that, existing signature
software implementations often rely on the separation of message hashing and
the signature operation, because pretty much all signature schemes until now
start with a hashing operation.

So there is a trade-off between a more secure design (PSS96) and less ob-
stacles in certain implementation scenarios. In the standardization process, the
less secure design was chosen. Due to this design decision, the combination of
RSASSA-PSS and a hash function that doesn’t provide collision-resistance cre-
ates an insecure algorithm. So it is crucial that a secure hash function is taken.
This is especially important to note as the existing standards for RSASSA-
PSS define SHA-1 as the default hash function, which can not be considered
collision-resistant any more.

5.3 Randomized Hashing

In the aftermath of the collision attacks against MD5 and SHA-1, Shai Halevi
and Hugo Krawczyk proposed a method called randomized hashing at the
Crypto 2006 conference [Halevi and Krawczyk, 2007]. Later, the NIST has
adopted this in SP-800-106 [Dang, 2009]. Currently there are no efforts under-
way in standardizing randomized hashing in cryptographic protocols.

21

The idea of randomized hashing is this: Before the generation of a hash,
a random value rv of fixed size should be generated. Then, by repeating rv,
a string Rv is generated with the same size as the message input m (this is
basically an XOR-Vigenère cipher of M with rv). Finally, the input to the hash
function is:

M = rv||(m⊕Rv)||rv length indicator

rv has to be shipped along with the signature to allow verification. This is a
problem, as this would often imply substantial changes to allow the use of ran-
domized hashing within existing protocols. Randomized hashing has the effect
that even if the underlying hash function is not collision resistant, a signature
scheme based on randomized hashing stays secure. Halevi and Krawvzyk call
this property eTCR (enhanced Target Collision Resistance).

The NIST document explicitly suggests this scheme for RSASSA-PSS and
states that the salt value from PSS could be used as rv.

Now, the interesting thing is that randomized hashing has a very similar
effect as the first salting and hashing step in PSS96, the original variant of PSS.
Due to the input randomization, PSS96 also provides eTCR. In fact, RSASSA-
PSS with randomized hashing looks very similar to PSS96, the only difference
is another (unnecessary) hashing step and the XOR-ing of the message. So by
applying randomized hashing on RSASSA-PSS, we get back the security we lost
with the changes from PSS96.

The additional XOR-ing adds additional security, but only for very rare
scenarios. PSS96’s first step is Hash(salt|M) – an attacker able to create two
messages M1 and M2, which create a collision for an unknown prefix would
be able to create a collision here. Although it is unlikely that such an attack
scenario exists, randomized hashing would prevent even that.

Dan Boneh and Weidong Shao provide an implementation of randomized
hashing for nss [Boneh and Shao, 2007]. With that, they also provide a pro-
posal how to use this within X.509 certificates, however, it seems that currently
there is no effort to push this into an official IETF standard. They use an X.509
certificate extension to ship the random value rv with the certificate. This
makes their scheme to be only usable within X.509 and there is no easy way to
adopt this to other protocols (for example CMS).

The combination RSASSA-PSS and randomized hashing would avoid the
need to transfer rv separately if one sets salt = rv, as it is suggested by the
NIST.

5.4 Randomization in SHA-3 Candidates

As already mentioned, currently a contest for the new cryptographic hash stan-
dard SHA-3 is going on. At the moment there are five candidates left in the
competition: BLAKE, Grøstl, JH, Keccak and Skein. The idea of randomized
hashing influenced several of them.

22

M

RMXsalt

RM

Hash

mHashPadding1 salt

Hash

H bc

bc

maskedDB

MGFxor

Padding2 salt

Figure 5: RSASSA-PSS in combination with randomized hashing

23

The BLAKE hash function has two inputs: The message and an optional salt.
The BLAKE paper explicitly mentions that this can be used for randomized
hashing (chapter 4.4, page 28 in [Aumasson et al., 2010]).

In the proposal for the Grøstl hash function, randomized hashing is also men-
tioned (chapter 6.2, page 18 in [Gauravaram et al., 2011]). However, Grøstl has
no dedicated mode for randomized hashing, the authors suggest that the method
proposed by Halevi/Krawczyk and the NIST can be used without modification.

The Keccak authors propose “keyed or randomized modes simply by
prepending a key or salt to the input message” 11. This is roughly the same
that is done in PSS96.

The most interesting concept is in Skein. They define the possibility to
use several optional inputs to the hash function (chapter 2.5, page 6 in
[Schneier et al., 2010]). Like BLAKE, Skein offers the possibility to inject a
salt (they call it nonce, but that is the same), making the direct use of Skein
as a randomized hashing function possible. The Skein paper proposes further
to use a unique identifier for every protocol as an additional input to avoid in-
teraction between protocols [Schneier et al., 1997]. It also suggests to use the
public key in a cryptographic operation as an additional input. The definition
of further optional arguments is possible and recommended.

5.5 Summary

We have seen that in the standardization process of PSS, a questionable tradeoff
has been made between security and easier implementation. Through direct
randomization of the input with a salt the original PSS96 proposal provides
enhanced target collision resistance (eTCR).

However, the idea of randomized hashing and the ongoing SHA-3 competi-
tion provide an opportunity to get this eTCR property back within upcoming
standards.

6 Considerations for Implementations

6.1 Hash Algorithm

PSS requires a hash function and a mask generation function derived from a hash
function. While it is in theory possible to use two different hash functions for
that, it is suggested to use the same for both for simplicity. Still, a combination
of two secure hash functions (for example SHA-256 as the input hash and MGF1
with SHA-512 as the mask generation function) does not cause any security
problems.

11keccak website at http://keccak.noekeon.org/

24

http://keccak.noekeon.org/

PKCS #1 v2.1 specifies the use of PSS with either SHA-1 or one of the SHA-
2 (SHA-256, SHA-384, SHA-512) algorithms. Later standards like RFC 4055
(PSS signatures for X.509) additionally allow SHA-224. The proposed default
is SHA-1.

However, it is highly suggested not to use SHA-1 anymore. We already
discussed the weaknesses of still widely used hash functions MD5 and SHA-1
in chapter 2.5. Up until now, the SHA-2-family (SHA-224, SHA-256, SHA-
385, SHA-512) can be considered secure and is the only widely accepted hash
standard without known weaknesses.

As PSS is a safety measure against unknown attacks, it barely makes any
sense to use it with SHA-1, where attacks are already known. The switch from
MD5/SHA-1 to SHA-2 should have a higher priority than the implementation
of PSS padding.

6.2 Key Size

For a long time, RSA key sizes between 512 and 768 bit were quite common.
They should be considered completely insecure today, although they still can
be found in real-world applications. In 2010, a research team factorized a 768
bit number [Kleinjung et al., 2010]. In 2009, it was possible to factorize a 512
bit key used for signing the operating system of a Texas Instruments calculator
by a private person on a home computer [ticalc.org, 2009]. Those attacks have
also questioned the security of RSA with 1024 bit.

In 2003, Adi Shamir (one of the original RSA authors) proposed a theoretical
design for a hypothetical device called TWIRL (The Weizmann Institute Rela-
tion Locator) that would be capable of factoring large numbers up to 1024 bit
in less than a year with a 10 million dollar device [Shamir and Tromer, 2003].
This would fully break RSA with a key size of 1024 bit or lower, meaning that
the private key can be revealed with knowledge of the public key.

Due to the high costs, nobody has publicly built a TWIRL device. However,
as with the transition to new hash functions, the transition to key sizes above
1024 bit should have higher priority than the transition to PSS and while in
theory possible, it barely makes sense to use PSS with a RSA key size of 1024
bit. RSA Inc. as well as the NIST propose not to use 1024 bit keys after 2010
any more.

6.3 Exponent

In its early days, RSA was done with a random, large-sized exponent. Later,
it became prevalent that for better performance in the encryption / verification
process, very small exponents like e = 3 could be used. Textbook RSA in
combination with a small exponent raises a number of issues, but all of them
can be avoided with padding and hashing.

25

However, we already saw that the Bleichenbacher attack was only possible
with a very small exponent like e = 3. So it seems small exponents are not a
problem per se, but a risky choice regarding implementation problems.

Usually today‘s RSA implementations use an exponent of e = 65537 - a
tradeoff between very big exponents that make verification very slow and very
small exponents that seem risky. e = 65537 avoids all known attacks against
small exponents. The NIST recommendations do not allow exponents smaller
than 65537 (page 6 in [NIST, 2010]).

6.4 Separating Keys for different Schemes

We saw in chapter 2.4 that when using plain RSA, it causes severe problems
when using the same key for signature generation and encryption. While with
any kind of padded / hashed RSA this is not a direct issue, it is still considered
bad practice to use the same key for different purposes. This is not limited
to RSA, it is always a useful safety measurement to use key material only for
one purpose due to unconsidered protocol / algorithm interactions. Schneier,
Wagner and Kelsey have investigated this [Schneier et al., 1997] and have come
to the conclusion that it is advisable to fixate the purpose of key material directly
with the key generation.

For our case, this would mean that in an ideal case, an RSA key (e.g., in an
X.509 certificate) would be limited to either RSASSA-PSS or RSAES-OAEP.
Neither should one key be used for both PSS and OAEP, nor should the same
key be used for old (PKCS #1 1.5) and new (PSS) padding.

6.5 Summary

When implementing RSA with PSS, we also need to make a couple of other
design decisions. For best security properties, it is advisable to use a secure
hash function without collision problems (currently one of the SHA-2 family
ones, in the future probably SHA-3), a decent key size (2048 bit or more) and
an exponent not to small (65537 or above).

It also looks like a good idea to limit the key usage exclusively to PSS and
not to use the same keys for different padding schemes.

7 Protocols – Standards and Implementations

In this chapter, we will have a look at some common cryptographic high level
protocols and their support of RSASSA-PSS.

26

Engine D
ef

a
u

lt
/

n
o

p
a
ra

m
et

er
s

W
it

h
p

a
ra

m
et

er
b

lo
ck

D
iff

er
in

g
h

a
sh

es

P
S

S
-k

ey
s

OpenSSL latest/1.0.0d a 7 7 7 7

OpenSSL CVS/1.1 3 3 3 7

nss latest/3.12.9 b 7 7 7 7

nss CVS+patches 3 3 3 7

GnuTLS latest/2.12.2 7 7 7 7

Windows Vista/7 SChannel.dll c 3 3 7 7

MacOS 10.6.7 d 3 7 7 7

IAIK java library 3 3 3 3

BouncyCastle java library 3 3 3 7

aused by Opera
bused by Firefox, Thunderbird, Chromium/Chrome on Linux
cused by Internet Explorer, Chromium/Chrome on Windows, Safari on Windows
dused by Safari on MacOS

Figure 6: PSS support in X.509 implementations

7.1 X.509

X.509 is a standard to provide certificates which can be used to ship public keys
for further cryptographic operations. Sometimes X.509 certificates are called
SSL certificates, but this is not accurate – SSL / TLS is their most common
usage, but X.509 certificates are more generic and can be used in a large variety
of protocols.

In RFC 4055 [IETF Network Working Group, 2005a], the use of the PKCS
#1 v2.1 primitives within X.509 certificates and certificate revocation lists is
specified, RFC 5756 [IETF Network Working Group, 2010] contains some mi-
nor updates. X.509 certificates are used in a wide variety of applications, their
most common use is in combination with SSL / TLS.

RFC 4055 allows two things: Generating signatures with RSASSA-PSS on
other X.509 certificates and creating keys designated for RSASSA-PSS and
RSAES-OAEP. Signatures can also be generated with “normal”/old RSA keys
without a designated use case. However, designated RSASSA-PSS keys are
barely supported anywhere at all.

Implementations of RFC 4055 have been lacking until recently. Most appli-
cations are based on four SSL / X.509-engines. The Microsoft Windows and
Apple MacOS X operating systems bring their own cryptographic engine that
is used by their own browsers (Internet Explorer, Safari) and partly by others

27

Figure 7: RSASSA-PSS certificate with Internet Explorer on Windows 7

(Chrome/Chromium). There are two widely used free software implementations
of X.509 and SSL: nss (Network Security Service, used by Mozilla Firefox/Thun-
derbird and Google Chrome/Chromium on Linux) and OpenSSL (used by the
Apache web server, the Opera browser and many others). Slighter less used is
GnuTLS.

I myself have contributed code for RSASSA-PSS support to the nss / Mozilla
project during the Google Summer of Code 2010 (we will cover implementation
details later in chapter 8). It will probably be part of one of the next major
Firefox updates (5.0 or 6.0).

PSS support is also present in the current CVS code of OpenSSL and will
be part of the upcoming 1.1 release. With the openssl command line tool, it
can be enabled with the parameter -sigopt rsa padding mode:pss and the
salt length can be set with -sigopt rsa pss saltlen:64. By default, openssl
makes the salt as long as possible.

Microsoft Windows supports PSS signatures since Windows Vista, but fails
with some uncommon parameters. It does not support SHA224 as the hash
function (this is not limited to PSS) and it fails when the input hash function
is different from the mask generation function’s hash function.

28

MacOS X supports only PSS signatures with default parameters. This limits
the support to signatures with the weak hash function SHA1.

There also exist two Java libraries which support RSASSA-PSS signatures.
The free software project Bouncy Castle supports certificate signatures.

The most complete RSASSA-PSS support is in a Java library by the Institute
for Applied Information Processing and Communication (IAIK) at the Technical
University of Graz. It is the only implementation I’m aware of that is able to
generate designated RSASSA-PSS certificates. A free version for educational
and research purpose can be downloaded at their website12.

The US-based Electronic Frontier Foundation runs the SSL Observatory13,
a research project that collects all certificates on https connections in the full
public IPv4 space. The complete database contains about 12 million certifi-
cates. Out of them, only four certificates on two IPs listed that are signed
with RSASSA-PSS. They were not signed by any browser-accepted certificate
authority.

7.2 Cryptographic Message Syntax (CMS) and S/MIME

The Cryptographic Message Syntax (CMS), based on the older PKCS #7, spec-
ifies encryption and signatures for generic messages. Its main use is within
S/MIME, a widely used standard for email encryption and signing. It is based
on X.509 certificates.

RSASSA-PSS and RSA-OAEP for CMS have been specified within RFC
4056 [IETF Network Working Group, 2005b]. CMS signatures are very similar
to signatures within X.509.

I am not aware of any implementation of RSASSA-PSS for Cryptographic
Message Syntax.

7.3 PKCS #11

PKCS #11 is a generic abstraction API defining cryptographic operations and
objects. PKCS #11 ships header files defining constants for cryptographic ob-
jects such as keys, signatures and algorithms. A constant starting with CKM

describes a “method”, basically meaning an algorithm. Since PKCS #11 ver-
sion 2.11, it knows the method CKM RSA PKCS PSS (chapter 12.1.9, page 201 in
[RSA Inc., 2004]).

PKCS #11 also has an abstraction for the PSS parameter block named
CK RSA PKCS PSS PARAMS. This defines a C struct containing all the relevant
meta information for a signature. There is a slight conceptual difference from the
ASN.1 structs from PKCS #1: Every combination of mask generation function

12http://jce.iaik.tugraz.at/
13https://www.eff.org/observatory

29

http://jce.iaik.tugraz.at/
https://www.eff.org/observatory

and hash algorithm gets its own constant, e.g., CKG MGF1 SHA256, while in PKCS
#1 there is an additional parameter to the mask generation function for the hash
function.

PKCS #11, however, does not have a way to define designated PSS keys.
PKCS #11 2.20 only has one key type for RSA – CKK RSA – it does not differ-
entiate the use of the RSA key.

7.4 IPsec

IPsec is a protocol to add a cryptographic layer on the IP protocol. IPsec is
composed by a large number of sub-protocols. In the IETF-standard RFC 4359
[IETF Network Working Group, 2006], the use of RSASSA-PSS in the Encap-
sulating Security Payload (ESP) and Authentication Header (AH) protocols
part of the IPsec protocol is specified. However, it is not possible to use any
other hash function than SHA-1 (see chapter 6.1).

7.5 XMLDSig, XMLenc

For XML documents, the W3C has two cryptographic specifications, XMLenc
for encryption [W3C, 2002] and XMLDSig for signatures [W3C, 2008]. While
XMLenc supports OAEP encryption, PSS support in XMLDSig is lacking. A
proposal from 2007 [Lanz et al., 2007] exists but has not been adopted in the
latest revision of the standard in 2008. Due to the known weaknesses of SHA-1,
this proposal uses SHA-256 as the default hash function.

Unlike X.509, XMLDSig does not use Object Identifiers for algorithms, in-
stead it uses an URL-based scheme. The URL directly refers to the algorithm
specification on the W3C web page.

The proposal of Lanz defines these identifiers:
http://www.example.org/xmldsig-pss/#rsa-pss

http://www.example.org/xmldsig-pss/#mgf1

Once standardized, http://www.example.org/ will be replaced by some-
thing like http://www.w3.org/2011/09/xmldsig-pss.

7.6 No Support yet: OpenPGP, DNSSEC, TLS

The software Pretty Good Privacy (PGP) by Phil Zimmerman made email
encryption popular in 1991. Today, PGP and other implementations like
the free software GPG are based on the OpenPGP standard RFC 4880
[IETF Network Working Group, 2007]. Although PKCS #1 v2.1 had already
been released when the standard was written, it exclusively uses EMSA-PKCS1-
v1 5 and there are no plans to change that yet. RFC 4880 also lists a couple of
reserved algorithm IDs, e.g., for elliptic curve cryptography, but none are listed
for OAEP/PSS.

30

http://www.example.org/xmldsig-pss/#rsa-pss
http://www.example.org/xmldsig-pss/#mgf1
http://www.example.org/
http://www.w3.org/2011/09/xmldsig-pss

DNSSEC is a security extension to the domain name system. It was devel-
oped back in 1999, but saw no widespread use for quite a long time. In 2008,
security researcher Dan Kaminsky presented a real-world attack on the caching
of DNS [US-CERT, 2008]. Through mitigation measures, it was possible to
make such attacks much harder, still DNSSEC is considered the only long-term
solution for a reliable DNS. All domain name authorities are working on im-
plementing DNSSEC and the root zone has been signed in 2010. The latest
signature algorithms based on RSA and SHA-2 are specified in RFC 5702 and
use EMSA-PKCS1-v1 5 (section 3 in [IETF Network Working Group, 2009]).
Section 8.1 contains a note that this has been decided to make the transition
from the SHA-1 algorithms easier. It is unlikely that this will change, as the
current plans of the DNS working group at the IETF are to switch to elliptic
curve algorithms in the future.

DKIM (DomainKeys Identified Mail) is a signature system for outgoing
emails to prevent spam. Similar to DNSSEC, it was developed long after the
standardization of PSS, but supports exclusively RSA-PKCS1-v1 5, because its
authors feared it would make implementation too difficult if they required a
scheme not widely supported.

The Transport Layer Security protocol (formerly SSL) is widely used to
secure existing protocols, like https, pop3s, smtps etc. The latest version does
not support any padding beside RSASSA-PKCS1-v1 5.

As shown in this chapter, a couple of the most significant cryptographic
protocols don’t support RSASSA-PSS at all and there are no transition plans.

7.7 Other Protocols using PSS

A small number of less widely used protocols implement PSS.

Microsoft’s digital rights management system COPP is using RSASSA-PSS
signatures to verify signatures on graphics drivers. However, it uses SHA-1 as
a hash algorithm and sets the salt length to zero [Microsoft, 2010].

The European standard for smart cards prEN 14890-1:2008 defines an in-
terface for RSASSA-PSS based signatures (part 2, page 14, chapter 6.3.2 in
[Technical Committee CEN/TC 224, 2008]). It states that the hash for the
mask generation function and the input have to be the same.

7.8 Summary

We have seen that the support for PSS within cryptographic protocols is very
limited. Many important protocol standards don’t support it at all and from
the ones that do, implementations are rare.

31

Figure 8: nss layers visualized, from http://www.mozilla.org/projects/

security/pki/nss/nss-guidelines.html

8 Implementation of X.509 PSS Signatures in
nss

The security library nss (Network Security Service) is the cryptography backend
for the Mozilla Firefox browser and Thunderbird email client. It originates from
the SSL library in the Netscape browser when Netscape originally invented SSL.

Today, nss is published under a free software license (GPL, LGPL or MPL).
Beside the Mozilla products, it is also used by Google’s Chrome/Chromium
browser on Linux and it is possible to use it in the Apache web server with
mod nss.

Within the Google Summer of Code 2010, I implemented support for
RSASSA-PSS signatures according to RFC 4055 and RFC 3447 in nss. It is
however not yet completely included in the nss CVS source.

All necessary patches for PSS support and a patched version of the nss code
are provided here:

http://rsapss.hboeck.de/download/current/

I will keep them updated until the code is fully included in nss.

8.1 nss Library Layers

The nss library source code consists of several layers. They are visualized in
figure 8. Usually everything above the PKCS #11 layer is stacked, meaning
every layer’s functions can only be accessed by the upper layer. The layers
below the PKCS #11 layer are helper functions available from everywhere in
the code.

32

http://www.mozilla.org/projects/security/pki/nss/nss-guidelines.html
http://www.mozilla.org/projects/security/pki/nss/nss-guidelines.html
http://rsapss.hboeck.de/download/current/

static SECStatus

emsa_pss_verify(const unsigned char *mHash ,

const unsigned char *em , unsigned int emLen ,

unsigned int emBits , HASH_HashType hashAlg ,

HASH_HashType maskHashAlg , unsigned int sLen)

{

const SECHashObject *hash;

void *hashContext;

unsigned char *db;

unsigned char *H_; /* H’ from the RFC */

unsigned int i, dbMaskLen , zeroBits;

SECStatus rv;

hash = HASH_GetRawHashObject(hashAlg);

dbMaskLen = emLen - hash ->length - 1;

/* Step 3 + 4 */

if ((emLen < (hash ->length + sLen + 2)) ||

(em[emLen - 1] != 0xbc)) {

PORT_SetError(SEC_ERROR_BAD_SIGNATURE);

return SECFailure;

}

/* Step 6 */

zeroBits = emLen *8 - emBits;

if ((em[0] >> (8 - zeroBits)) != 0) {

PORT_SetError(SEC_ERROR_BAD_SIGNATURE);

return SECFailure;

}

/* Step 7 */

db = (unsigned char *) PORT_Alloc(dbMaskLen);

if (db == NULL) {

PORT_SetError(SEC_ERROR_NO_MEMORY);

return SECFailure;

}

/* &em[dbMaskLen] points to H, used as mgfSeed */

MGF1(maskHashAlg , db, dbMaskLen , &em[dbMaskLen], hash ->length);

/* Step 8 */

for (i = 0; i < dbMaskLen; i++) {

db[i] ^= em[i];

}

Listing 3: Beginning of emsa pss verify from rsawrapr.c

33

/* CK_RSA_PKCS_PSS_PARAMS is new for v2.11.

* CK_RSA_PKCS_PSS_PARAMS provides the parameters to the

* CKM_RSA_PKCS_PSS mechanism(s). */

typedef struct CK_RSA_PKCS_PSS_PARAMS {

CK_MECHANISM_TYPE hashAlg;

CK_RSA_PKCS_MGF_TYPE mgf;

CK_ULONG sLen;

} CK_RSA_PKCS_PSS_PARAMS;

Listing 4: PSS parameter struct from PKCS #11 2.2 / pkcs11t.h

8.2 Object Identifiers

The first trivial task was letting nss know the Object Identifiers. nss has numeric
constants for every OID it knows, which are listed in util/secoidt.h and
mapped to OIDs and descriptions in util/secoid.c. Relevant for PSS are
SEC OID PKCS1 RSA PSS SIGNATURE and SEC OID PKCS1 MGF1 (I also added the
OIDs required for OAEP, although they are not used yet).

8.3 freebl, MGF1

The basic cryptographic operations are within the freebl directory (bl is an ab-
breviation for bottom layer). For the RSA part, no changes were required, as the
RSA primitive itself does not change with PSS. But PSS requires a mask gen-
eration function – specifically MGF1 – which is a new cryptographic primitive.
So one of the first steps was adding a primitive for MGF1 to freebl/mgf1.c.

8.4 PSS Padding and Verification Code

The actual padding for RSA happens within the softoken layer. For PSS, I
added two new public functions RSA CheckSignPSS and RSA SignPSS (analogous
to RSA CheckSign and RSA Sign, which are for old PKCS #1 v1.5 padding).
They call (non-public) functions emsa pss verify / emsa pss encode, which are
implementations of the pseudo-functions EMSA-PSS-VERIFY / EMSA-PSS-
ENCODE from PKCS #1 v2.1 (section 9.1.1 and 9.1.2 in [RSA Inc., 2002]).
However, instead of using the message as the input, we take the hash of the
message as the input, which is explicitly allowed within the standard (section
9.1, point 3 in [RSA Inc., 2002]).

8.5 PKCS #11 Module

In nss, all access from higher level functions to cryptographic operations works
through an implementation of PKCS #11. PKCS #11 defines a C struct
CK RSA PKCS PSS PARAMS that contains the same information as the ASN.1 pa-
rameter block used in X.509. I made use of this and store the information in

34

such a struct to pass it down through all API layers.

The PKCS #11 layer causes a major problem regarding PSS-only keys. RFC
4055 allows not only using RSASSA-PSS as the signature algorithm, but it also
allows the key within a certificate to be limited exclusively to PSS. It even allows
specifying a defined set of parameters allowed for this key. From a cryptographic
point of view, this is generally a good idea. However, as mentioned in chapter
7.3, PKCS #11 2.20 only knows one key type for RSA (CKK RSA) and has no
way to specify a designated PSS key. For this reason, I saw no easy way of
implementing such key types within nss in the given framework, although in
the long term it is strongly recommended to use such restricted keys. This
should be considered in the next review of the PKCS #11 standard. I have sent
a comment to the PKCS feedback mail address on this, but got no reply.

8.6 Upper Layers

The remaining changes needed were in the cryptohi-layer. It provides
high-level API functions for signature verification. Here, I had to im-
plement routines for decoding and encoding the PSS parameter block
(PSSU DecodeDERPSSParams and PSSU EncodeDERPSSParams), for which i added
a new file cryptohi/pssutil.c. They convert the parameter block from ASN.1
to the PKCS #11 struct CK RSA PKCS PSS PARAMS mentioned above and back.
They get called while decoding the signature algorithm from sec DecodeSigAlg

in secvfy.c.

Further work included mostly the already mentioned parameter passing
through all functions and some new public API functions that allow sig-
nature creation with parameters. For example, analogous to the function
SEC DerSignData, I added a new function SEC DerSignDataWithParams.

8.7 Tools and Frontends

nss ships a couple of command line tools to access the functionality in the
libraries. Certificate management can be done with certutil. I added an addi-
tional parameter --pss, which allows the creation of RSASSA-PSS signatures
with any parameter set. Although this hardly makes any sense, I even allowed
to set a combination of one hash function for the input hash and another one
for the mask generation function. As it is part of the specification, this can at
least be used to test other implementations.

The following commands would create a sample, self-signed PSS certificate
and export it:
certutil -N -d [dir]

certutil -S -2 -v 9999 -g 2048 -Z SHA512 --pss MGF1:SHA512:32 -n

mycert -s "cn=mycert" -x -t "C" -d [dir]

certutil -L -d [dir] -n mycert -a

35

Figure 9: Certificate signed with RSASSA-PSS in Firefox, old and new.

[dir] must be replaced with a directory name where the certificate database
will be generated and stored. The --pss parameter can be followed by a combi-
nation of mask generation function, appertaining hash function and salt length.
It is also possible to specify --pss default - this will select the defaults from
the standard (MGF1 with SHA-1 and a salt length of 32 Bytes). The hash func-
tion for the input message is not specific to PSS and can be specified through
the -Z parameter.

8.8 Firefox

When the nss library is able to verify RSASSA-PSS signatures on certificates,
this is also true for any application using that library. Therefore, Firefox itself
needs no code changes to be able to verify PSS certificates. The only cosmetic
change that is necessary is to let Firefox know about the Object Identifier, so
the GUI can correctly display the used certificate algorithm (see Figure 9).

8.9 Further work

During my work on nss, I tested my code with the debugging tool Valgrind for
memory leaks, which helped a lot to spot bugs in my own work. The existing
command line tools from nss had a couple of own memory leaks I eliminated
during that work to make the checking easier14.

14https://bugzilla.mozilla.org/582800 and https://bugzilla.mozilla.org/581804

36

https://bugzilla.mozilla.org/582800
https://bugzilla.mozilla.org/581804

8.10 Difficulties

I found out that the most difficult part was not the implementation of the PSS
padding itself, but the handling of the parameter block. RFC 3447 specifies
a parameter block (s. 49 in [RSA Inc., 2002]) allowing to specify the hash
function, salt length, mask generation function and the hash function used inside
the mask generation function. The parameters are decoded (cryptohi/secvfy.c)
several API layers above the signature generation (softoken/rsawrapr.c) and
have to be passed through them (pk11wrap/pk11obj.c). None of the existing
algorithms within nss had a parameter block, so this required a bunch of API
changes.

8.11 Conclusions from the Implementation

The parameter block adds a lot of complexity for no real gain. It allows for
example constructions where the hash function used directly and the hash func-
tion for the mask generation function differ (e.g., SHA-1 with MGF1 using
SHA-256). The variable salt length allows to choose values that violate the
security properties of the whole PSS construction (e.g., a zero length salt). It
would’ve been much easier to stick to a predefined set of sane parameters and
assign them their own IDs.

Another point where unnecessary complexity was added was the handling
of key sizes. A number of bit-shifting operations were only necessary because
RFC 3447 allows keys of any size. It would have made the whole implementation
significantly simpler if the allowed key sizes were restricted to ones divisible by
8 (which makes a byte-representation without padding possible). As usually
all real-world applications use common key sizes like 1024, 2048 or 4096, this
restriction would not have many implications on users.

The fact that the only input to the whole signature generation and verifi-
cation functions is the hash of a message was welcome for the implementation,
but it weakens the security (see chapter 5). It would’ve needed even more API
changes to make a construction like the original PSS proposal that does not
start with Hash(M) possible. However, I would still consider randomization
of the hash a good idea, as it would vastly improve the security on real-world
attacks.

8.12 Summary

I have provided working patches to support RSASSA-PSS in nss, a crypto-
graphic library widely used by popular products like the Mozilla Firefox browser.
Due to the very invasive changes required, inclusion of them into the main nss
codebase will probably still require some time.

Further possible tasks that could be done are support for designated
RSASSA-PSS keys/certificates and support for Cryptographic Message Syntax

37

Figure 10: Online test in Internet Explorer / Windows Vista

and S/MIME email encryption.

9 Online Tests with X.509 Certificates

I have set up a number of test web hosts with X.509 certificates signed with
RSASSA-PSS. General information can be found here:
http://ssl.hboeck.de/

Various certificate samples (not only PSS related) are set up on subdomains.
There is no browser-accepted certificate authority that will issue certificates
with uncommon algorithms, so all certificates are just signed by my own testing
certificate authority. But its root certificate can easily be installed in most
browsers:
http://ssl.hboeck.de/rootca.crt

A sample with an RSASSA-PSS signature with common settings can be
found at
https://pss.ssl.hboeck.de/

Various uncommon combinations of algorithms can also be found, for ex-
ample using a different hash for the message input (SHA-256) and the mask
generation function (SHA-384):
https://pss-sha256-mgf1-sha512-20.ssl.hboeck.de/

38

http://ssl.hboeck.de/
http://ssl.hboeck.de/rootca.crt
https://pss.ssl.hboeck.de/
https://pss-sha256-mgf1-sha512-20.ssl.hboeck.de/

During the implementation of RSASSA-PSS in nss, I found out that the
handling of uncommon key sizes are especially prone to errors. I also discovered
a bug in OpenSSL with PSS certificates using a key size which is a multiple of
8 plus 115, which has been fixed fast by the OpenSSL developers. To check for
such issues, I created test cases with intermediate certificates with a key size of
2049 (n*8+1) and 2055 bit (n*8-1):
https://pss-subcert-2049.ssl.hboeck.de/

https://pss-subcert-2055.ssl.hboeck.de/

I also created an intermediate certificate with a key bound to RSASSA-PSS,
however I’m not aware of any browser capable of verifying that at the moment:
https://pss-subca.ssl.hboeck.de/

The test page includes images with green ticks included from all the subdo-
mains, so one can easily see what is supported at a glance. Also, a bigger image
that is composed out of parts fetched from the different subdomains is displayed
(see screenshot at figure 10) - in an ideal case with all options supported, the
image is displayed complete.

Due to my lack of owning many IP addresses, all those hosts/certificates can
only be accessed either through IPv6 or through Server Name Indication (SNI),
a TLS extension that allows more than one X.509 certificate on one IP. While all
common browsers (Internet Explorer, Firefox, Safari, Chrome, Opera) support
SNI, some special purpose browsers still do not (for example the Android default
browser).

10 Public Authorities, Research and Industry
Organizations

A number of public authorities, research and industry organizations provide
recommendations and regulations for cryptographic algorithms. If their sug-
gestions are required by some law, this can be an especially important push to
deploy better cryptography.

10.1 Electronic Signatures in the EU

The European Union has a framework for digital signatures. Directive
1999/93/EC [EU, 1999] defines rules for different kinds of electronic signatures
that should be interchangeable through the European Union. The directive it-
self has no specific requirements on cryptographic algorithms, it is up to every
country to define a set of suitable algorithms. But there is a list of recommenda-
tions by the European Telecommunications Standards Institute (ETSI). Many
countries just refer to the ETSI document in their own signature laws.

The latest ETSI recommendations from 2007 (chapter 7.2, page 23 in

15http://rt.openssl.org/Ticket/Display.html?id=2315

39

https://pss-subcert-2049.ssl.hboeck.de/
https://pss-subcert-2055.ssl.hboeck.de/
https://pss-subca.ssl.hboeck.de/

[ETSI, 2007]) consider RSASSA-PSS to be better especially for long term use.
For applications requiring signature validity for up to 10 years, PSS with a min-
imum salt length of 64 bit is the only suggested padding scheme (chapter 9.3,
page 29 in [ETSI, 2007]).

10.2 Electronic Signatures in Germany

Germany, unlike most other EU-countries, produces its own list of cryptographic
algorithms allowed according to its signature law. The Bundesnetzagentur pro-
duces a yearly document commonly called “Algorithmenkatalog”. It is in various
aspects stricter than the ETSI recommendations. It says that signatures with
RSASSA-PKCS1-v1 5 may not be used after 2014, certificate signatures with
RSASSA-PKCS1-v1 5 may not be issued after 2016 (chapter 3.1, page 6 in
[Bundesnetzagentur, 2011]). It is suggested not to use RSASSA-PKCS1-v1 5
after 2013 anymore.

Other documents by German authorities reference the “Algorithmenkata-
log”. For example, the technical policy TR-03125 by the BSI (Bundesamt für
Sicherheit in der Informationstechnik) for long-term archiving of documents says
that the recommendations from the current “Algorithmenkatalog” apply for sig-
nature algorithms (chapter 4.3, page 10 in [BSI, 2011]) . However, signatures
within this technical policy are XML signatures – which, as we saw earlier, don’t
support PSS yet (see chapter 7.5). So these policies might likely contradict each
other if RSASSA-PSS within XMLDSig is not standardized soon.

10.3 Electronic Passports

While https and SSL / TLS in general are the most common use cases of X.509,
they are not the only one. Most international passports today contain signatures
on a chip from a so-called Country Signing Certificate Authorities (CSCA). In a
technical report by the International Civil Aviation Organization (ICAO), the
recommendation is to use RSASSA-PSS and states are required to be able to ver-
ify both RSASSA-PSS and RSASSA-PKCS1 v15 (chapter 8.2 in [ICAO, 2006]).

The ICAO provides a worldwide list of CSCA root certificates at
https://pkddownloadsg.icao.int

It contains 192 certificates from Japan, South Korea and Canada that are
signed with RSASSA-PSS. The majority (3504) uses RSASSA-PKCS1 v15 with
SHA-256, 142 use RSASSA-PKCS1 v15 with SHA-1. 36 use ECDSA with SHA-
1, 18 use ECDSA with SHA-256.

40

https://pkddownloadsg.icao.int

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 27 (0x1b)

Signature Algorithm: PKCS #1 RSA -PSS Signature

Parameters:

Hash algorithm: SHA -256

Mask algorithm: PKCS #1 MGF1 Mask Generation Function

Mask hash algorithm: SHA -256

Salt Length: 32 (0x20)

Issuer: "CN=e-passportCSCA ,OU=The Ministry of Foreign

Affairs ,O=Japanese Government ,C=JP"

Validity:

Not Before: Thu Aug 30 01:58:47 2007

Not After : Thu Aug 30 01:58:47 2018

Subject: "CN=Minister for Foreign Affairs ,OU=e-passportDS ,

OU=The Ministry of Foreign Affairs ,O=Japanese Government ,C=JP"

Subject Public Key Info:

Public Key Algorithm: PKCS #1 RSA Encryption

RSA Public Key:

Modulus:

d7:e3:e2:df:f0:d5:1e:f0:1f:0c:88:cd:1a:0c:7d:5b:

[...]

Exponent: 3 (0x3)

Signed Extensions:

Name: Certificate Authority Key Identifier

Key ID:

62:5b:86:8c:78:da:3e:31:95: e8 :39:22: fe:75:2d:40:

75:ce:a0:90

Name: Certificate Key Usage

Critical: True

Usages: Digital Signature

Name: Certificate Policies

Data:

Policy Name: OID .1.2.392.100350.6.5.1.1.2

Signature Algorithm: PKCS #1 RSA -PSS Signature

Parameters:

Hash algorithm: SHA -256

Mask algorithm: PKCS #1 MGF1 Mask Generation Function

Mask hash algorithm: SHA -256

Salt Length: 32 (0x20)

Signature:

0b:eb:bb :67:83: af:58:cf:a0:2c:f9:1e:96:71: a7:68:

[...]

Fingerprint (MD5):

F6:24:EF:75:9D:B5 :87:00: FC:19:2D:03:2C:18:C2:FE

Fingerprint (SHA1):

E1:47:A9:15:E2:89:9C:B1:F4:F3:02:C6:9A:7A:F3:CD:9C:4D:F7:95

Listing 5: Japanese certificate for electronic passports (with tool pp from nss)

41

10.4 NESSIE and ECRYPT

The European Union research project NESSIE (New European Schemes for
Signatures, Integrity and Encryption) compiled a list of recommended crypto-
graphic algorithms in 2004 [NESSIE, 2004]. It lists RSA-PSS exclusively and
no variant with old padding. It should be noted however that the NESSIE
recommendations are outdated and also contain at least one broken algorithm
(SFLASH).

There is a follow-up research project to NESSIE called ECRYPT, which
releases a “Yearly Report on Algorithms and Key Lengths”. In the latest report,
they list both RSA-PSS and RSA PKCS #1 v1.5, but write: “However, due
to the lack of security proof, we recommend whenever possible to use RSA
PSS instead, there is no advantage in using v1.5.” (chapter 14.2.1, page 72
in [ECRYPT, 2010]). They recommend not to use the same key for PSS and
PKCS #1 v1.5.

10.5 CA/Browser Forum

Web browsers ship a list of root certificates from certificate authorities to val-
idate the X.509 certificates from https connections. In 2007, the CA/Browser
Forum defined guidelines for so-called Extended Validation (EV) certificates.
These are certificates which have to comply with stricter security rules (it should
be noted, however, that the EFF SSL Observatory found many EV certificates
not compliant with their own rules).

The latest guidelines from the CA/Browser Forum contain no information
about RSA padding rules [CA/Browser Forum, 2010]. They also claim that due
to the lack of RSASSA-PSS implementations in browsers they have no plans to
require PSS padding in the foreseeable future.

10.6 Summary

In many official state documents, at least a long term transition to PSS based
RSA padding is scheduled. Internet certificate authorities don’t seem to be
upon the ones pushing for better cryptography.

The most ambitious plan comes from the German “Bundesnetzagentur”,
which require a full transition from hash-then-sign schemes to PSS until 2015
for messages and 2017 for certificates. However, it seems that there is no effort
underway to accompany this time plan with a push for the required standards
and implementations and there is a serious risk that if this doesn’t happen very
soon, it may be impossible to follow those requirements in practice.

42

11 Really provable Security

The concept of provable security we investigated with PSS and OAEP is a very
limited one. It is only possible to provide “provable” security under certain
assumptions. It relies on three assumptions: That factoring is a hard problem,
that RSA is really as hard as factoring and that well-designed hash functions
behave like random oracles. One could ask if it is at least theoretically pos-
sible to create provably secure public key cryptography only under provable
assumptions.

What would that mean? We could define a “provably secure” public key
function as one that can only be broken by an attacker that is able to do a
certain number of calculations dependent on the key size. Now we can choose
a key size high enough to make it implausible that any attacker with human
technology may be able to break that it within, say, the lifetime of a human
being.

What we would require is a proof that for any attacker skilled with the best
possible algorithms, it requires a minimum amount of calculations to forge a
signature for a given message and a public key or to get the decrypted message
given an encrypted one and a public key. We will need some basic complexity
theory before we can answer such questions.

11.1 Complexity Theory, P/NP and FP/FNP

Complexity theory defines so-called complexity-classes as sets of problems with
certain properties.

The first complexity class we will investigate is P. A problem X is in P if
it is a decision problem (the solution is just “yes” or “no”) and an algorithm
exists that solves X for any input with length n with a running time that can
be expressed as a polynomial of n. Such algorithms are usually considered to
be “fast”. An example for a P problem are primality tests: “Given a number
with n digits, can you decide if it is a prime?” For a long time, it was unknown
if a polynomial primality test exists. In 2002, a polynomial primality algorithm
– the AKS algorithm – was presented and thus showed that primality tests are
in P.

The second important complexity class is NP. NP stands for “Nondetermin-
istic Polynomial time”, but we will use an easier notion here: NP problems
are all decision problems where a polynomial algorithm exists to verify a result
given some extra information.

The problems interesting for public key cryptography – like factoring – are
usually not decision problems. But it is easily possible to transfer them into
decision problems. A decision problem for factoring could be like this: “Given
a large number N and a number X with X < N , is there a factor of N smaller
than X?” A fast algorithm that is able to solve this decision problem can be
used with a binary search (which itself is polynomial) to factor large numbers.

43

Problems that are not decision problems, but that can be transferred into an
NP decision problem with a polynomial algorithm are called FNP. Analogous
to that, problems that are not decision problems, but can be transferred into
such by a polynomial algorithm are called FP.

It is easy to see that factoring is in FNP: If we have the factors of a large
number N , we can easily check that by multiplying them. It is also easy to see
that ANY problem that can be used for public key cryptography must be in
FNP. The extra information here is the private key. Given someone has a private
key, he can easily create forged signatures and decrypt messages – otherwise the
algorithm would not make sense.

It is one of the big unsolved mathematical problems if P 6= NP (the problem
if FP 6= FNP is equivalent). While it seems rather unlikely that P = NP ,
nobody has been able to prove that there actually exist problems that are in
NP , but are harder than P . This is one of the seven millennium problems for
which the Clay Mathematics Institute has designated one million dollar for the
solution [Cook, 2000].

Now as we have seen, all problems usable for public key cryptography are
in FNP . If P = NP then public key cryptography would not work at all. So
a precondition to provable public key cryptography is the proof for P 6= NP .

11.2 NP complete Problems

Another relevant complexity class of problems are NP complete problems. If
one had an efficient algorithm for any NP complete problem, this could be used
to solve any other NP problem. So NP complete problems are the hardest
problems inside the class of NP problems.

One might ask if it is possible to design a public key cryptosystem based on
an NP-complete problem (or, to be more exact, on an FNP-complete problem).
This has been tried various times in the past, but nobody has ever succeeded.
Even if someone finds a suitable trapdoor function for an NP complete problem,
this does not automatically mean that the system is secure. The reason is that
complexity classes only make statements about the worst running time of an
algorithm. For many NP complete problems, probabilistic algorithms exist that
will not give optimal results in any case, but in the majority of cases. This
makes it unusable for cryptosystems – an algorithm that provides security in a
small number of cases but fails most of the time is of little use. To be able to use
an NP-complete problem, we would need a way to ensure that the cryptosystem
only uses the instances of an NP-complete problem that are actually hard to
solve.

We have already mentioned two cryptosystems based on NP-complete prob-
lems in chapter 2.10. Most attempts to design an NP-complete cryptosystem
have failed in the past - for example the Merkle-Hellmann knapsack cryptosys-
tem [Shamir, 1984] (knapsack is an NP complete problem). A non-broken
cryptosystem based on an NP-complete problem is the McEliece algorithm – it

44

NP Problems

PSPACE problems

BQP

Figure 11: Expected (but unproven) relationship of complexity classes 16

is rarely used because it has very large keys (for a sane parameter set around half
a megabyte). This makes it unsuitable for most common applications, where
it is a common task to transfer keys fast (for example, it is not unlikely that a
simple https connection causes two or more RSA public keys to be transferred
before any data is transmitted). But still, although McEliece is based on an NP
complete problem, it lacks proof that it is as hard to break as the worst case
scenarios of an NP complete problem - and that is what provable security would
require.

11.3 Quantum Computers and BQP

A topic that has gained interest in recent years are quantum computers. Peter
Shor [Shor, 1996] was able to show that with a quantum computer, it would be
possible to solve certain problems relevant for all of today’s mainstream public
key systems in polynomial time. The Shor algorithm is able to exponentially
reduce the complexity and running time of factoring and discrete logarithm
algorithms. Shor’s algorithm can also be applied to discrete logarithms in elliptic
curves. So this means that if anyone was able to build a large enough quantum
computer, it would allow breaking RSA, Rabin-Williams, ElGamal, DSA and
ECDSA. However, there is no need to panic yet: The best quantum computer
built up until now had 7 quantum bits and was successfully able to factor the
number 15 into 3 and 5 [IBM, 2001]. The class of those problems is called BQP
(bounded error quantum polynomial time).

A quantum computer is using physical effects of quantum theory to solve
problems that presumably cannot be solved efficiently on classical computers.
So this brings in an important topic: If we want to construct a provably secure

16Diagram from Wikimedia Commons at http://commons.wikimedia.org/wiki/File:BQP_

complexity_class_diagram.svg

45

http://commons.wikimedia.org/wiki/File:BQP_complexity_class_diagram.svg
http://commons.wikimedia.org/wiki/File:BQP_complexity_class_diagram.svg

public key cryptosystem, we want it not only to be unbreakable by classical
computers, but preferably unbreakable by all computers that can be built within
our physical universe. This makes the question of provable security not only a
problem of complexity theory and mathematics, but also a problem of physics.

A paper by Scott Aaronson discusses the question of complexity and phys-
ical reality in detail [Aaronson, 2005]. He introduces the “NP Hardness As-
sumption” – the assumption that NP complete problems are intractable in the
physical world.

11.4 Provably secure Public Key Algorithm

Concluding the above, to construct a provably secure public key cryptosystem,
we would need to do the following steps:

• Show that P != NP.

• Define and prove a lower bound of complexity for a given NP problem (we
will call it LP). This may be an NP complete problem or not, depending
very much on what the proof for P != NP and for lower complexity bounds
looks like.

• Find a trapdoor function for LP.

• Construct a public key cryptosystem out of LP.

• Prove that anyone who can break KLP can also solve LP, which would
imply KLP is as secure as it is hard to solve LP.

• Prove that KLP does always map to the hard parts of LP and that no
probabilistic efficient algorithms exist.

• Show that solving LP can not be accelerated significantly by the use of
physical effects like quantum computers.

Finally, if we want to construct real-world cryptography out of KLP, we
would probably also need hash functions and symmetric ciphers with provable
properties, as cryptosystems are usually hybrid constructions. Also, we need
schemes like PSS that provide provable security for the whole constructions.

11.5 Summary

Extending the idea of provable security to a concept that is not limited to model
assumptions like the random oracle model or that factorization is hard seems
to be far out of reach with today’s knowledge in complexity theory.

The first step (P ! = NP) is considered being one of the hardest theoretical
problems in computer science and mathematics at all and no solution to it is in
sight. Several of the other steps require breakthroughs in areas of mathematics

46

and physics where today very little is known at all. So while what would be
required for “provable security” is in theory imaginable, it is unlikely to happen
any time soon.

12 Conclusion

12.1 Difficulties in deploying better Cryptography

In theory, we’d like to see the best cryptography that is available used within
real world applications. In practice, this is often not the case – often enough,
what’s used is just “what’s not completely broken yet” and widespread adoption
waits until real-world attacks can be shown in practice.

We saw that the PSS padding provides better security in certain circum-
stances than old padding methods like PKCS #1 v1.5. However, adoption of
RSA-PSS is widely lacking. What we can see here and also with similar ex-
amples (like the transition from MD5/SHA-1 to SHA-2) is that it seems to be
very hard to deploy improvements from theoretical cryptographic research to
practical applications.

For an algorithm to be used, it usually has to pass several obstacles:

1. The algorithm has to be developed, examined and accepted by the cryp-
tographic community.

2. The algorithm primitives have to be standardized.

3. High level protocols using those primitives need to be standardized.

4. The standards need to be implemented in libraries and applications, both
the primitives and the high level protocols.

5. Finally, they need to be used and set as the default within applications.

RSASSA-PSS is mostly stuck between 2 and 3. But even when looking at
the example of SHA-2, it is in many cases stuck between 3 and 4, although
real-world attacks are expected within the next couple of years.

One of the most often cited reasons not to switch to better algorithms is
backwards compatibility. As an extreme example, within the browser marked,
it usually can be expected that rarely anyone will adopt anything that is not
backwards compatible to browsers several years old (the argument I hear most
often when asking for signatures using SHA-2 instead of SHA-1 is that Windows
XP before SP3 does not support that). So even if at some point all browsers
support X.509 certificates with RSASSA-PSS, it is unlikely that any major
certificate authority will use them any time soon.

But that does not explain why it also seems to be very hard to deploy
improvements on the standards level. As we have seen, PSS has not been

47

adopted in a couple of new standards like DNSSEC or DKIM that were de-
veloped after the RSASSA-PSS primitives had been standardized in PKCS #1
v2.1. An important argument here was that the standardization committees
feared their standards would not be accepted at all if they went with a cryp-
tographic primitive that hash limited support in current software. A typical
chicken-egg-problem between software and standards.

The biggest push for new algorithms may come from public authorities. In
the case of PSS, if the German BSI insists on its plans to require it after 2015
for qualified signatures, it is likely that this will push implementations within
all major email clients. Similar rules could be applied on other applications,
for example https connections and their certificates on crucial government web
services.

Finally, the people working on those issues are very different and often have a
limited understanding of the areas of the others. Internet protocol designers and
software developers often do not have any cryptographic expertise. On the other
hand cryptographers are often mathematicians or theoretical scientists who do
not have much experience with programming and even less with operating real-
world internet services. More interdisciplinary collaboration would be desirable.

Looking at security threats causing real-world attacks, the vast majority
does not involve cryptography at all (buffer overflows, SQL injections). From
those that involve cryptography, implementation problems or high-level protocol
design flaws are much more likely to be exploited than problems in the base
algorithm primitives. So for software developers, improving security on that
layer comes with a very low priority.

12.2 Summary

We have presented the RSA-PSS padding scheme. Beside the better theoretical
properties, we have sown also that due to the randomization involved, RSA-PSS
provides more robustness with respect to real-world problems that happened in
the past. Despite that, we saw that 15 years after its invention and eight years
after having been standardized, we don’t see any relevant use of it. This may
change in some areas as requirements by public authorities within some years
will require the adoption of PSS.

In all new applications, whenever possible RSASSA-PSS should be preferred
over EMSA-PKCS1-v1 5. For already existing applications, a gradual transi-
tion is advisable. As there is no direct threat, there is no need to rush on that,
but it is a useful extra security consideration. Secure choices for key size (mini-
mum 2048 bit), exponent (65537 or above) and hash function (SHA-2 family or
upcoming SHA-3 standard) should be self-evident. To achieve an even better
security, a combination of RSASSA-PSS with randomized hashing should be
considered.

To conclude things, I doubt that PSS will see any widespread usage at all.
When considering the switch to new public key algorithms, most people today

48

are more likely to consider the use of elliptic curve cryptography. When consid-
ering the future of public key cryptography in the long term, we will probably
see another topic raising within the next years: The requirement to have algo-
rithms resistant to quantum computers. Neither PSS nor elliptic curves (nor
anything else deployed today) provides anything here, so in the long run we will
probably see completely new public key algorithms developed.

What stays is the general idea of provable security. While it is far from
being realistic to see any system that is fully provably secure, it seems to be a
reasonable approach to provide provable security in parts of systems where it is
possible. When we cannot prove the security of a full system, we can at least
try to prove parts of the system and show if the complexity of systems relies on
well-known and understood problems. Also, we saw that the PSS construction
provides more robustness against flaws in the implementation. It seems reason-
able to follow that approach further and investigate algorithm designs that are
less likely to be implemented with security flaws.

49

References

[Aaronson, 2005] Aaronson, S. (2005). NP-complete Problems and Physical
Reality. SIGACT News Complexity Theory Column. Available from: http:
//www.scottaaronson.com/papers/npcomplete.pdf.

[Aumasson et al., 2010] Aumasson, J.-P., Henzen, L., Meier, W., and Phan, R.
C.-W. (2010). SHA-3 proposal BLAKE. Available from: http://131002.

net/blake/blake.pdf.

[Bellare and Rogaway, 1993] Bellare, M. and Rogaway, P. (1993). Random Ora-
cles are Practical: A Paradigm for Designing Efficient Protocols. Proceedings
of the First ACM Conference on Computer and Communications Security,
ACM, November 1993. Available from: http://cseweb.ucsd.edu/users/

mihir/papers/ro.pdf.

[Bellare and Rogaway, 1995] Bellare, M. and Rogaway, P. (1995). Optimal
Asymmetric Encryption – How to Encrypt with RSA. Available from:
http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf.

[Bellare and Rogaway, 1996] Bellare, M. and Rogaway, P. (1996). The ex-
act security of digital signatures: How to sign with RSA and Rabin. Ad-
vances in Cryptology – EUROCRYPT 96, Lecture Notes in Computer Sci-
ence Vol. 1070, U. Maurer ed. Available from: http://www.cs.ucdavis.

edu/~rogaway/papers/exact.html.

[Bellare and Rogaway, 1998] Bellare, M. and Rogaway, P. (1998). PSS: Prov-
ably secure encoding method for digital signatures. Submission to IEEE
P1363. Available from: http://www.cs.ucdavis.edu/~rogaway/papers/

exact.html.

[Bellare and Rogaway, 2001] Bellare, M. and Rogaway, P. (2001). United
States Patent 6,266,771 – Probabilistic Signature Scheme. Available from:
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=

HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=

50&s1=6,266,771.PN.&OS=PN/6,266,771&RS=PN/6,266,771.

[Bellare and Rogaway, 2006] Bellare, M. and Rogaway, P. (2006). United
States Patent 7,036,014 – Probabilistic Signature Scheme. Available from:
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=

HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=

50&s1=7,036,014.PN.&OS=PN/7,036,014&RS=PN/7,036,014.

[Bernstein, 2009] Bernstein, D. J. (2009). Introduction to post-quantum cryp-
tography. Available from: http://pqcrypto.org/www.springer.com/cda/

content/document/cda_downloaddocument/9783540887010-c1.pdf.

[Boneh et al., 1996] Boneh, D., DeMillo, R. A., and Lipton, R. J. (1996). On
the importance of checking cryptographic protocols for faults. Available from:
http://crypto.stanford.edu/~dabo/abstracts/faults.html.

[Boneh and Shao, 2007] Boneh, D. and Shao, W. (2007). Randomized Hashing
for Digital Certificates: Halevi-Krawczyk Hash. Available from: http://

crypto.stanford.edu/firefox-rhash/.

50

http://www.scottaaronson.com/papers/npcomplete.pdf
http://www.scottaaronson.com/papers/npcomplete.pdf
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf
http://cseweb.ucsd.edu/users/mihir/papers/ro.pdf
http://cseweb.ucsd.edu/users/mihir/papers/ro.pdf
http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/exact.html
http://www.cs.ucdavis.edu/~rogaway/papers/exact.html
http://www.cs.ucdavis.edu/~rogaway/papers/exact.html
http://www.cs.ucdavis.edu/~rogaway/papers/exact.html
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,266,771.PN.&OS=PN/6,266,771&RS=PN/6,266,771
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,266,771.PN.&OS=PN/6,266,771&RS=PN/6,266,771
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6,266,771.PN.&OS=PN/6,266,771&RS=PN/6,266,771
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7,036,014.PN.&OS=PN/7,036,014&RS=PN/7,036,014
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7,036,014.PN.&OS=PN/7,036,014&RS=PN/7,036,014
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7,036,014.PN.&OS=PN/7,036,014&RS=PN/7,036,014
http://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
http://crypto.stanford.edu/~dabo/abstracts/faults.html
http://crypto.stanford.edu/firefox-rhash/
http://crypto.stanford.edu/firefox-rhash/

[Brier et al., 2006] Brier, E., Chevallier-Mames, B., Ciet, M., and Clavier, C.
(2006). Why one should also secure RSA public key elements. Available from:
http://www-mlab.jks.ynu.ac.jp/ches/Eric%20Brier.pdf.

[Brown, 2005] Brown, D. R. L. (2005). A Weak-Randomizer Attack on RSA-
OAEP with e = 3. Available from: http://eprint.iacr.org/2005/189.

[BSI, 2011] BSI (2011). Technische Richtlinie 03125 – Beweiswerterhal-
tung kryptographisch signierter Dokumente – Anlage TR-ESOR-M.2:
Krypto-Modul – Version 1.1. Available from: https://www.bsi.bund.de/

ContentBSI/Publikationen/TechnischeRichtlinien/tr03125/index_

htm.html.

[Bundesnetzagentur, 2011] Bundesnetzagentur (2011). Algorithmenkat-
alog: Bekanntmachung zur elektronischen Signatur nach dem Sig-
naturgesetz und der Signaturverordnung (Übersicht über geeignete
Algorithmen). Bundesanzeiger Nr. 17. Available from: http:

//www.bundesnetzagentur.de/cae/servlet/contentblob/192414/

publicationFile/10008/2011AlgoKatpdf.pdf.

[CA/Browser Forum, 2010] CA/Browser Forum (2010). Guidelines for the Is-
suance and Management of Extended Validation Certificates 1.3. Available
from: http://www.cabforum.org/Guidelines_v1_3.pdf.

[Canetti et al., 2002] Canetti, R., Goldreich, O., and Halevi, S. (2002). The
Random Oracle Methodology, Revisited. Available from: http://eprint.

iacr.org/1998/011.pdf.

[Cook, 2000] Cook, S. (2000). The P versus NP Problem. Available from:
http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf.

[Coron et al., 2009] Coron, J.-S., Joux, A., Naccache, D., and Paillier, P. (2009).
Fault Attacks on Randomized RSA Signatures. Available from: http://www.
jscoron.fr/publications/iso2fault.pdf.

[Coron and Mandal, 2009] Coron, J.-S. and Mandal, A. (2009). PSS is secure
against random fault attacks. Available from: http://www.jscoron.fr/

publications/pssfault.pdf.

[Dang, 2009] Dang, Q. (2009). NIST Special Publication 800-106 – Randomized
Hashing for Digital Signatures. Available from: http://csrc.nist.gov/

publications/nistpubs/800-106/NIST-SP-800-106.pdf.

[Davida, 1982] Davida, G. (1982). Chosen signature cryptanalysis of the RSA
(MIT) public key cryptosystem. Tech. Rept. TR-CS-82-2, Dept. of Electrical
Engineering and Computer Science, Univ. of Wisconsin.

[Dent, 2006] Dent, A. W. (2006). Fundamental problems in provable security
and cryptography. Available from: http://eprint.iacr.org/2006/278.

pdf.

[Diffie and Hellman, 1977] Diffie, W. and Hellman, M. E. (1977). New Direc-
tions in Cryptography. Available from: http://groups.csail.mit.edu/

cis/crypto/classes/6.857/papers/diffie-hellman.pdf.

51

http://www-mlab.jks.ynu.ac.jp/ches/Eric%20Brier.pdf
http://eprint.iacr.org/2005/189
https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03125/index_htm.html
https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03125/index_htm.html
https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03125/index_htm.html
http://www.bundesnetzagentur.de/cae/servlet/contentblob/192414/publicationFile/10008/2011AlgoKatpdf.pdf
http://www.bundesnetzagentur.de/cae/servlet/contentblob/192414/publicationFile/10008/2011AlgoKatpdf.pdf
http://www.bundesnetzagentur.de/cae/servlet/contentblob/192414/publicationFile/10008/2011AlgoKatpdf.pdf
http://www.cabforum.org/Guidelines_v1_3.pdf
http://eprint.iacr.org/1998/011.pdf
http://eprint.iacr.org/1998/011.pdf
http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf
http://www.jscoron.fr/publications/iso2fault.pdf
http://www.jscoron.fr/publications/iso2fault.pdf
http://www.jscoron.fr/publications/pssfault.pdf
http://www.jscoron.fr/publications/pssfault.pdf
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf
http://eprint.iacr.org/2006/278.pdf
http://eprint.iacr.org/2006/278.pdf
http://groups.csail.mit.edu/cis/crypto/classes/6.857/papers/diffie-hellman.pdf
http://groups.csail.mit.edu/cis/crypto/classes/6.857/papers/diffie-hellman.pdf

[Dobbertin, 1996] Dobbertin, H. (1996). Cryptoanalysis of MD5 Com-
press. Available from: http://www.iacr.org/conferences/ec96/rump/

dobberti.ps.gz.

[ECRYPT, 2010] ECRYPT (2010). European Network of Excellence in Cryp-
tology II: Yearly Report on Algorithms and Keysizes (2009-2010). Available
from: http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

[ElGamal, 1985] ElGamal, T. (1985). A Public Key Cryptosystem and a Sig-
nature Scheme Based on Discrete Logarithms. IEEE Transactions on Infor-
mation Theory, vol. IT-31, no. 4, Jul 1985. Available from: http://groups.
csail.mit.edu/cis/crypto/classes/6.857/papers/elgamal.pdf.

[ETSI, 2007] ETSI (2007). ETSI TS 102 176-1 V2.0.0 – Electronic Sig-
natures and Infrastructures (ESI); Algorithms and Parameters for Secure
Electronic Signatures; Part 1: Hash functions and asymmetric algorithms.
Available from: http://www.etsi.org/deliver/etsi_ts/102100_102199/

10217601/02.00.00_60/ts_10217601v020000p.pdf.

[EU, 1999] EU (1999). DIRECTIVE 1999/93/EC – Community framework
for electronic signatures. Available from: http://eur-lex.europa.eu/

smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&numdoc=

31999L0093&model=guichett.

[Finney, 2006] Finney, H. (2006). Bleichenbacher’s RSA signature forgery based
on implementation error. Available from: http://www.mail-archive.com/

cryptography@metzdowd.com/msg06537.html.

[Gauravaram et al., 2011] Gauravaram, P., Knudsen, L. R., Matusiewicz, K.,
Mendel, F., Rechberger, C., Schläffer, M., and Thomsen, S. S. (2011). Grøstl
– a SHA-3 candidate. Available from: http://www.groestl.info/Groestl.
pdf.

[Grell and University of California, 1999] Grell, M. and University of California
(1999). Mail to IEEE P1363 committee about PSS patents. Available from:
http://grouper.ieee.org/groups/1363/P1363/letters/UC.html.

[Halevi and Krawczyk, 2007] Halevi, S. and Krawczyk, H. (2007). Strength-
ening Digital Signatures via Randomized Hashing. Available from: http:

//webee.technion.ac.il/~hugo/rhash/rhash.pdf.

[IBM, 2001] IBM (2001). IBM’s Test-Tube Quantum Computer Makes History.
Available from: http://www-03.ibm.com/press/us/en/pressrelease/

965.wss.

[ICAO, 2006] ICAO (2006). Machine Readable Travel Documents – Part
1: Machine Readable Passports – Volume 2: Specifications for Electron-
ically Enabled Passports with Biometric Identification Capability. Avail-
able from: http://www2.icao.int/en/MRTD/Downloads/Doc%209303/Doc%

209303%20English/Doc%209303%20Part%203%20Vol%202.pdf.

[IEEE, 2004] IEEE (2004). P1363a – Standard Specifications for Public Key
Cryptography — Amendment 1: Additional Techniques. Available from:
http://grouper.ieee.org/groups/1363/P1363a/.

52

http://www.iacr.org/conferences/ec96/rump/dobberti.ps.gz
http://www.iacr.org/conferences/ec96/rump/dobberti.ps.gz
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://groups.csail.mit.edu/cis/crypto/classes/6.857/papers/elgamal.pdf
http://groups.csail.mit.edu/cis/crypto/classes/6.857/papers/elgamal.pdf
http://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.00.00_60/ts_10217601v020000p.pdf
http://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.00.00_60/ts_10217601v020000p.pdf
http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&numdoc=31999L0093&model=guichett
http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&numdoc=31999L0093&model=guichett
http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&numdoc=31999L0093&model=guichett
http://www.mail-archive.com/cryptography@metzdowd.com/msg06537.html
http://www.mail-archive.com/cryptography@metzdowd.com/msg06537.html
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
http://grouper.ieee.org/groups/1363/P1363/letters/UC.html
http://webee.technion.ac.il/~hugo/rhash/rhash.pdf
http://webee.technion.ac.il/~hugo/rhash/rhash.pdf
http://www-03.ibm.com/press/us/en/pressrelease/965.wss
http://www-03.ibm.com/press/us/en/pressrelease/965.wss
http://www2.icao.int/en/MRTD/Downloads/Doc%209303/Doc%209303%20English/Doc%209303%20Part%203%20Vol%202.pdf
http://www2.icao.int/en/MRTD/Downloads/Doc%209303/Doc%209303%20English/Doc%209303%20Part%203%20Vol%202.pdf
http://grouper.ieee.org/groups/1363/P1363a/

[IETF Network Working Group, 2005a] IETF Network Working Group
(2005a). RFC 4055 – Additional Algorithms and Identifiers for RSA
Cryptography for use in the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. Available from:
http://tools.ietf.org/html/rfc4055.

[IETF Network Working Group, 2005b] IETF Network Working Group
(2005b). RFC 4056 – Use of the RSASSA-PSS Signature Algo-
rithm in Cryptographic Message Syntax (CMS). Available from:
http://tools.ietf.org/html/rfc4056.

[IETF Network Working Group, 2006] IETF Network Working Group (2006).
RFC 4359 – The Use of RSA/SHA-1 Signatures within Encapsulating Security
Payload (ESP) and Authentication Header (AH). Available from: http:

//tools.ietf.org/html/rfc4359.

[IETF Network Working Group, 2007] IETF Network Working Group (2007).
RFC 4880 – OpenPGP Message Format. Available from: http://tools.

ietf.org/html/rfc4880.

[IETF Network Working Group, 2009] IETF Network Working Group (2009).
RFC 5702 – Use of SHA-2 Algorithms with RSA in DNSKEY and RRSIG
Resource Records for DNSSEC. Available from: http://tools.ietf.org/

html/rfc5702.

[IETF Network Working Group, 2010] IETF Network Working Group (2010).
RFC 5756 – Updates for RSAES-OAEP and RSASSA-PSS Algorithm Pa-
rameters. Available from: http://tools.ietf.org/html/rfc5756.

[ISO, 2006] ISO (2006). ISO 18033-2: A Standard for Public-Key Encryption.
Available from: http://www.shoup.net/iso/.

[Kleinjung et al., 2010] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K.,
Thomé, E., Bos, J. W., Gaudry, P., Kruppa, A., Montgomery, P. L., Osvik,
D. A., te Riele, H., Timofeev, A., and Zimmermann, P. (2010). Factorization
of a 768-bit RSA modulus. Available from: http://eprint.iacr.org/2010/
006.pdf.

[Lanz et al., 2007] Lanz, K., Bratko, D., and Lipp, P. (2007). RSA-PSS in
XMLDSig. Available from: http://www.w3.org/2007/xmlsec/ws/papers/

08-lanz-iaik/.

[McEliece, 1978] McEliece, R. J. (1978). A Public-Key Cryptosystem based
on algebraic Coding Theory. Available from: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF.

[Microsoft, 2010] Microsoft (2010). Validating the Certificate Chain. Avail-
able from: http://msdn.microsoft.com/en-us/library/dd407310(v=vs.

85).aspx.

[NESSIE, 2004] NESSIE (2004). New European Schemes for Signatures, In-
tegrity and Encryption: Final report of European project number IST-1999-
12324. Available from: https://www.cosic.esat.kuleuven.be/nessie/

Bookv015.pdf.

53

http://tools.ietf.org/html/rfc4055
http://tools.ietf.org/html/rfc4056
http://tools.ietf.org/html/rfc4359
http://tools.ietf.org/html/rfc4359
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc5702
http://tools.ietf.org/html/rfc5702
http://tools.ietf.org/html/rfc5756
http://www.shoup.net/iso/
http://eprint.iacr.org/2010/006.pdf
http://eprint.iacr.org/2010/006.pdf
http://www.w3.org/2007/xmlsec/ws/papers/08-lanz-iaik/
http://www.w3.org/2007/xmlsec/ws/papers/08-lanz-iaik/
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://msdn.microsoft.com/en-us/library/dd407310(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd407310(v=vs.85).aspx
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

[NIST, 2010] NIST (2010). NIST Special Publication SP 800-78-3 – Crypto-
graphic Algorithms and Key Sizes for Personal Identity Verification. Avail-
able from: http://csrc.nist.gov/publications/nistpubs/800-78-3/

sp800-78-3.pdf.

[Rabin, 1979] Rabin, M. O. (1979). Digitalized signatures and public-key func-
tions as intractable as factorization. Available from: http://publications.
csail.mit.edu/lcs/specpub.php?id=780.

[Rivest et al., 1977] Rivest, R. L., Shamir, A., and Adleman, L. (1977). A
Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Available from: http://people.csail.mit.edu/rivest/Rsapaper.pdf.

[RSA Inc., 1993] RSA Inc. (1993). PKCS #1 v1.5. Available from: http:

//www.rsa.com/rsalabs/node.asp?id=2125.

[RSA Inc., 2002] RSA Inc. (2002). PKCS #1 v2.1. Available from: http:

//www.rsa.com/rsalabs/node.asp?id=2125.

[RSA Inc., 2004] RSA Inc. (2004). PKCS #11 v2.20. Available from: ftp:

//ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf.

[Schneier, 1999] Schneier, B. (1999). Elliptic Curve Public-Key Cryptogra-
phy. Available from: http://www.schneier.com/crypto-gram-9911.html#
EllipticCurvePublic-KeyCryptography.

[Schneier et al., 2010] Schneier, B., Ferguson, N., Lucks, S., Whiting, D., Bel-
lare, M., Kohno, T., Callas, J., and Walker, J. (2010). The Skein Hash
Function Family – Version 1.3. Available from: http://www.skein-hash.

info/sites/default/files/skein1.3.pdf.

[Schneier et al., 1997] Schneier, B., Kelsey, J., and Wagner, D. (1997). Protocol
Interactions and the Chosen Protocol Attack. Available from: http://www.

schneier.com/paper-chosen-protocol.html.

[Shamir, 1984] Shamir, A. (1984). A polynomial-time algorithm for break-
ing the basic Merkle - Hellman cryptosystem. IEEE Transactions on
Information Theory, vol. 30, no. 5, pp. 699-704, Sep 1984. Available
from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

123.5840&rep=rep1&type=pdf.

[Shamir and Tromer, 2003] Shamir, A. and Tromer, E. (2003). Factoring Large
Numbers with the TWIRL Device. Proceedings Crypto 2003. Available from:
http://people.csail.mit.edu/%7Etromer/papers/twirl.pdf.

[Shor, 1996] Shor, P. (1996). Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer. Available from:
http://arxiv.org/abs/quant-ph/9508027v2.

[Sotirov et al., 2008] Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Mol-
nar, D., Osvik, D. A., and de Weger, B. (2008). MD5 considered harm-
ful today. Available from: http://media.ccc.de/browse/congress/2008/

25c3-3023-en-making_the_theoretical_possible.html.

54

http://csrc.nist.gov/publications/nistpubs/800-78-3/sp800-78-3.pdf
http://csrc.nist.gov/publications/nistpubs/800-78-3/sp800-78-3.pdf
http://publications.csail.mit.edu/lcs/specpub.php?id=780
http://publications.csail.mit.edu/lcs/specpub.php?id=780
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2125
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
http://www.schneier.com/crypto-gram-9911.html#EllipticCurvePublic-KeyCryptography
http://www.schneier.com/crypto-gram-9911.html#EllipticCurvePublic-KeyCryptography
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.schneier.com/paper-chosen-protocol.html
http://www.schneier.com/paper-chosen-protocol.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.5840&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.5840&rep=rep1&type=pdf
http://people.csail.mit.edu/%7Etromer/papers/twirl.pdf
http://arxiv.org/abs/quant-ph/9508027v2
http://media.ccc.de/browse/congress/2008/25c3-3023-en-making_the_theoretical_possible.html
http://media.ccc.de/browse/congress/2008/25c3-3023-en-making_the_theoretical_possible.html

[Technical Committee CEN/TC 224, 2008] Technical Committee CEN/TC 224
(2008). prEN 14890-1:2008 – Application Interface for smart cards used as
Secure Signature Creation Devices – Version 2.2.

[ticalc.org, 2009] ticalc.org (2009). TI-83 Plus OS Signing Key Cracked.
Available from: http://www.ticalc.org/archives/news/articles/14/

145/145154.html.

[US-CERT, 2008] US-CERT (2008). Vulnerability Note VU#800113 – Multiple
DNS implementations vulnerable to cache poisoning. Available from: http:

//www.kb.cert.org/vuls/id/800113.

[W3C, 2002] W3C (2002). XML Encryption Syntax and Processing. Available
from: http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/.

[W3C, 2008] W3C (2008). XML Signature Syntax and Processing
(Second Edition). Available from: http://www.w3.org/TR/2008/

REC-xmldsig-core-20080610/.

[Wang et al., 2004] Wang, X., Feng, D., Lai, X., and Yu, H. (2004). Collisions
for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. Available from:
http://eprint.iacr.org/2004/199.

[Wang et al., 2005] Wang, X., Yin, Y. L., and Yu, H. (2005). Find-
ing Collisions in the Full SHA-1. Advances in Cryptology –
CRYPTO 2005. Available from: http://people.csail.mit.edu/yiqun/

SHA1AttackProceedingVersion.pdf.

[Williams, 1980] Williams, H. (1980). A modification of the RSA public-key
encryption procedure. IEEE transactions on Information Theory.

55

http://www.ticalc.org/archives/news/articles/14/145/145154.html
http://www.ticalc.org/archives/news/articles/14/145/145154.html
http://www.kb.cert.org/vuls/id/800113
http://www.kb.cert.org/vuls/id/800113
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://eprint.iacr.org/2004/199
http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf
http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf

Nomenclature

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BQP Bounded error Quantum Polynomial time

BSI Bundesamt für Sicherheit in der Informationstechnik

CSCA Country Signing Certificate Authority

DKIM DomainKeys Identified Mail

DNSSEC Domain Name System Security Extension

DSA Digital Signature Algorithm

eTCR enhanced Target Collision Resistance

ETSI European Telecommunications Standards Institute

EV Extended Validation

FDH Full Domain Hashing

GPG GNU Privacy Guard

GPL GNU General Public License

ICAO International Civil Aviation Organization

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IPsec Internet Protocol Security

ISO International Organization for Standardization

KDF2 Key Derivation Function 2

LGPL GNU Lesser General Public License

MD5 Message Digest 5

MGF1 Mask Generation Function 1

MPL Mozilla Public License

NESSIE New European Schemes for Signatures, Integrity and Encryption

NIST National Institute of Standards and Technology

NP Nondeterministic Polynomial Time

NSA National Security Agency

nss Network Security Services

56

OAEP Optimal asymmetric Encryption Padding

OID Object Identifier

P Polynomial Time

PGP Pretty Good Privacy

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

RFC Request for Comments

RSA Rivest, Shamir, Adelman Algorithm

RW Rabin-Williams

SHA Secure Hash Algorithm

SNI Server Name Indication

SSA Signature Scheme with Appendix

SSL Secure Socket Layer

TLS Transport Layer Security

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

57

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Berlin, den

Johannes Böck

Einverständniserklärung

Ich erkläre hiermit mein Einverständnis, dass die vorliegende Arbeit in der Bib-
liothek des Institutes für Informatik der Humboldt-Universität zu Berlin aus-
gestellt werden darf.

Berlin, den

Johannes Böck

58

	Introduction
	Theoretical Background
	Public Key Cryptography and RSA
	How RSA works
	RSA and Factoring
	Plain / Textbook RSA
	Hash Functions
	Hash-then-Sign
	Provable Security
	Random Oracle Model
	Randomization / Salt
	Other Public Key Algorithms
	Summary

	The Probabilistic Signature Scheme
	How PSS works
	Appendix and Message Recovery
	Standardization of Algorithm Primitives
	Mask Generation Function
	Patents on PSS
	PSS for Rabin-Williams
	Summary

	Attacks on old Signature Schemes
	Bleichenbacher Attack on PKCS #1 v1.5 Implementations
	Fault-based Attack
	Summary

	Input hashing
	Real-world Attack on X.509 Certificates using MD5
	Differences between original and standardized PSS
	Randomized Hashing
	Randomization in SHA-3 Candidates
	Summary

	Considerations for Implementations
	Hash Algorithm
	Key Size
	Exponent
	Separating Keys for different Schemes
	Summary

	Protocols – Standards and Implementations
	X.509
	Cryptographic Message Syntax (CMS) and S/MIME
	PKCS #11
	IPsec
	XMLDSig, XMLenc
	No Support yet: OpenPGP, DNSSEC, TLS
	Other Protocols using PSS
	Summary

	Implementation of X.509 PSS Signatures in nss
	nss Library Layers
	Object Identifiers
	freebl, MGF1
	PSS Padding and Verification Code
	PKCS #11 Module
	Upper Layers
	Tools and Frontends
	Firefox
	Further work
	Difficulties
	Conclusions from the Implementation
	Summary

	Online Tests with X.509 Certificates
	Public Authorities, Research and Industry Organizations
	Electronic Signatures in the EU
	Electronic Signatures in Germany
	Electronic Passports
	NESSIE and ECRYPT
	CA/Browser Forum
	Summary

	Really provable Security
	Complexity Theory, P/NP and FP/FNP
	NP complete Problems
	Quantum Computers and BQP
	Provably secure Public Key Algorithm
	Summary

	Conclusion
	Difficulties in deploying better Cryptography
	Summary

	References
	Nomenclature

